Supporting Information

Pd-Catalyzed Direct Oxidative mono-Aroyloxylation of O-

Aralkyl Substituted Acetoxime Ethers

Ling-Yan Shao,^a Chao Li,^{a,b} Ying Guo,^a Kun-Kun Yu,^a Fei-Yi Zhao,^a Wen-Li Qiao,^a

Hong-Wei Liu,^a Dao-Hua Liao,*a and Ya-Fei Ji*a

^a School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

Fax: (+86)-021-6425-3314

E-mail: jyf@ecust.edu.cn (Y. F. Ji) or liaodh@ecust.edu.cn (D. H. Liao). ^b Roche R & D Center (China) Ltd., 720 Cailun Road, Shanghai 201203, P. R. China

Content

1 General Information	S2
2 General Procedures and Characterization Data of Compounds	S2
3 Selectively Cleavage of N–O Bond	
4 Kinetic Isotope Effect Experiment	S14
5 All Copies of Spectra	S15

1. General Information

Unless otherwise indicated, all reagents were obtained from commercial sources and used as received without further purification. All reactions were carried out in oven-dried glassware and monitored by thin layer chromatography (TLC, pre-coated silica gel plates containing HF₂₅₄). All solvents were only dried over 4 Å molecular sieves. Reaction products were purified *via* column chromatography on silica gel (300–400 mesh). Melting points were determined using an open capillaries and uncorrected. NMR spectra were determined on Bruker AV400 in CDCl₃ with TMS as internal standard for ¹H NMR (400 MHz) and ¹³C NMR (100 MHz), respectively. HRMS were measured on a QSTAR Pulsar I LC/TOF MS mass spectrometer or Micromass GCTTM gas chromatograph-mass spectrometer.

2. General Procedures and Characterization Data of Compounds

catalvst (n₁ mol-%) соон oxidant (n2 equiv.) solvent (6 mL), 80 °C, 10 h 2a Catalyst (n1 mol-Oxidant (n₂ Yield Entry Solvent (%)^[b] %) equiv.) 1 Pd(OAc)₂ (10) $K_2S_2O_8$ (2.0) DCE 67 2 Pd(OAc)₂(10) oxone (2.0) DCE 65 3 Pd(OAc)₂ (10) PhI(OAc)₂ (2.0) DCE 61 Pd(OAc)₂ (10) Na₂S₂O₈ (2.0) DCE 4 59 5 Pd(OAc)₂ (10) TBHP (2.0) DCE 0 Pd(OAc)₂ (10) AgOAc (2.0) DCE 0 6 Pd(OAc)₂ (10) 7 K₂S₂O₈ (2.0) CH₃CN 71 8 Pd(OAc)₂ (10) K₂S₂O₈ (2.0) DCM 61 9 $Pd(OAc)_2(10)$ $K_2S_2O_8$ (2.0) DMSO 0 10 Pd(OAc)2 (10) K₂S₂O₈ (3.0) **CH**₃**CN** 76 Pd(OAc)₂(10) K₂S₂O₈ (4.0) 76 11 CH₃CN 12^{C]} Pd(OAc)₂ (10) $K_2S_2O_8$ (3.0) CH₃CN 70 13^[d] Pd(OAc)₂ (10) $K_2S_2O_8$ (3.0) CH_3CN 55 $(n^{3}-C_{3}H_{5})_{2}Pd_{2}Cl_{2}$ 14 $K_2S_2O_8$ (3.0) CH₃CN 31 (10) PdCl₂ (10) CH₃CN 15 $K_2S_2O_8$ (3.0) 0 16 (Ph₃P)₂PdCl₂ (10) $K_2S_2O_8$ (3.0) CH₃CN 0 17 Pd(OAc)₂ (15) K₂S₂O₈ (3.0) CH₃CN 67 18 $Pd(OAc)_2(5)$ $K_2S_2O_8$ (3.0) CH₃CN 65

2.1 Investigations of the reaction parameters (Table 1).^[a]

[a] Reaction conditions: **1a** (1.0 mmol), **2a** (2.0 mmol), catalyst (n_1 mol- %), oxidant (n_2 equiv.), solvent (6 mL) at 80 °C for 10 h; [b] Isolated yields; [c] 60 °C; [d] 100 °C. DMSO = dimethylsulfoxide; DCM = dichloromethane; DCE = 1,2-dichloroethane.

General procedure: A mixture of substrate **1a** (1.0 mmol), **2a** (2.0 mmol), $Pd(OAc)_2$ (n_1 mol-%), oxidant (n_2 equiv.) and solvent (6 mL) was stirred at specific temperature for 10 h. Upon completion of the reaction, the mixture was dropped into the saturated NaHCO₃ solution (30 mL).

The solution was extracted with ethyl acetate (25 mL×3), and then the combined organic layers were dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to supply the desired product **3a**.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (3a): white solid, 215.2 mg (76%), m.p. 72–74 °C; IR (cm⁻¹) \bar{v} 3063, 2930, 2855, 1728, 1599, 1452, 1370, 1217, 1107, 954, 763, 703; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.22 (s, 1H), 8.21 (s, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.53–7.50 (m, 2H), 7.49–7.48 (m, 1H), 7.39 (dt, J_I = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.29 (dd, J_I = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.23 (dd, J_I = 8.0 Hz, J_2 = 1.2 Hz, 1H), 5.12 (s, 2H), 1.77 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.0, 155.4, 149.1, 133.6, 130.5, 130.3 (2C), 129.9, 129.5, 128.9, 128.6 (2C), 126.0, 122.6, 70.7, 21.7, 15.6; HRMS (EI): m/z [M⁺] calcd. for C₁₇H₁₇NO₃: 283.1208, found: 283.1204.

2.2 X-Ray crystallographic data of 3a

Crystal data and structure refinement for cd16181.

Identification code	cd16181	
Empirical formula	C17 H17 N O3	
Formula weight	283.31	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 12.049(3) Å	a= 90°.
	b = 7.1678(19) Å	b= 90°.
	c = 35.147(9) Å	$g = 90^{\circ}$.

Volume 7	3035.4(14) Å ³
Density (calculated)	8 1.240 Mg/m ³
Absorption coefficient F(000)	0.085 mm ⁻¹ 1200
Crystal size Theta range for data collection	0.180 x 0.150 x 0.120 mm ³ 2.049 to 25.499°.
Index ranges	-14<=h<=14, -8<=k<=6, -42<=l<=42
Reflections collected	16093
Independent reflections	2827 [R(int) = 0.0783]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6359
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 2827 / 0 / 193
Goodness-of-fit on F ²	1.023
Final R indices [I>2sigma(I)]	R1 = 0.0553, $wR2 = 0.1462$
R indices (all data)	R1 = 0.0913, $wR2 = 0.1661$
Largest diff. peak and hole	0.172 and -0.154 e.Å ⁻³

2.3 Investigation on the substrate scope of aromatic acids (Scheme 3)

General procedure: A mixture of substrate **1a** (1.0 mmol), **2** (2.0 mmol), Pd(OAc)₂ (0.10 mmol), and K₂S₂O₂ (3.0 mmol) was dissolved in CH₃CN (6 mL), then the reaction mixture was heated at 80 °C for 10 h, or a specific time of 15 h. Upon completion of the reaction, the mixture was dropped into the saturated NaHCO₃ solution (30 mL). The solution was extracted with ethyl acetate (25 mL×3), and then the combined organic layers were dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to supply the desired product **3**.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 4-methoxybenzoate (3b): white solid, 253.6 mg (81%), m.p. 74–76 °C; IR (cm⁻¹) \bar{v} 3066, 2919, 2849, 1729, 1455, 1316, 1251, 1162, 1065, 918, 845, 749; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.15 (d, J = 9.2 Hz, 2H), 7.47 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 5.10 (s, 2H), 3.86 (s, 3H), 1.77 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.7, 163.9, 155.4, 149.2, 132.4 (2C), 130.6, 129.8, 128.9, 125.9, 122.7, 121.9, 113.9 (2C), 70.7, 55.6, 21.8, 15.7; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉NO₄: 313.1314, found 313.1316.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 4-methylbenzoate (3c): white solid, 226.8 mg (79%), m.p. 86–88 °C; IR (cm⁻¹) \bar{v} 3063, 2929, 1726, 1655, 1492, 1446, 1374, 1217, 1107, 978, 879, 824, 781;¹H NMR (400 MHz, CDCl₃, ppm): δ 8.09 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 7.2 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.32–7.26 (m, 3H), 7.22 (d, J = 7.6 Hz, 1H), 5.11 (s, 2H), 2.45 (s, 3H), 1.78 (s, 3H) , 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.0, 155.4, 149.2, 144.4, 130.6, 130.4 (2C), 129.9, 129.3 (2C), 128.9, 126.8, 126.0, 122.7, 70.7, 21.84, 21.82, 15.7; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉NO₃: 297.1365, found 297.1362.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 4-nitrobenzoate (3d): yellow solid, 196.9 mg (60%), m.p. 65–67 °C; IR (cm⁻¹) \bar{v} 3112, 2923, 2855, 1744, 1605, 1519, 1453, 1344, 1259, 1025, 988, 869, 750, 711; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.37 (dd, J_1 = 14.4 Hz, J_2 = 9.2 Hz, 4H), 7.50 (dd, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.41 (td, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.32 (td, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.24 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 1H), 5.09 (s, 2H), 1.75 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.2, 155.6, 151.0, 148.9, 135.1, 131.4 (2C), 130.4, 130.3, 129.7, 126.7, 123.8 (2C), 122.4, 70.8, 21.8, 15.7; HRMS (EI): m/z [M⁺] calcd. for C₁₇H₁₆N₂O₅: 328.1059, found 328.1051.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 4-fluorobenzoate (3e): yellow oil, 201.7 mg (67%); IR (cm⁻¹) \bar{v} 3073, 2921, 2851, 1737, 1601, 1505, 1453, 1366, 1261, 1152, 1066, 1014, 852, 749, 684; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.25–8.21 (m, 2H), 7.74 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.38 (dt, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.29 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.23–7.15 (m, 3H), 5.10 (s, 2H), 1.77 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 166.2 (d, ¹ $J_{CF} = 254.9$ Hz), 164.0, 155.4, 149.1, 132.9 (d, ³ $J_{CF} = 9.4$ Hz, 2C), 130.5, 130.1, 129.0, 126.2, 125.8 (d, ⁴ $J_{CF} = 3.0$ Hz), 122.6, 115.9 (d, ² $J_{CF} = 22.0$ Hz, 2C), 70.8, 21.8, 15.7; HRMS (EI): *m/z* [M⁺] calcd. for C₁₇H₁₆FNO₃: 301.1114, found 301.1119.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 4-(trifluoromethyl)benzoate (3f): white solid, 228.2 mg (65%), m.p. 69–71 °C; IR (cm⁻¹) \bar{v} 3080, 2951, 2915, 1740, 1267, 1166, 1109, 1077, 1006, 989, 860, 766, 701; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.33 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.50 (dd, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.41 (dt, J_1 = 8.0 Hz, J_2 = 1.6 Hz, 1H), 7.30 (dt, J_1 = 7.2 Hz, J_2 = 1.2 Hz, 1H), 7.23 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz, 1H), 5.10 (s, 2H), 1.75 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.8, 155.4, 149.0, 135.0 (q, ² $_{CF}$ = 32.5 Hz), 132.9, 130.7 (2C), 130.4, 130.3, 129.2, 123.7 (q, ¹ $_{CF}$ = 271.1 Hz), 126.4, 125.7 (q, ³ $_{CF}$ = 3.6

Hz, 2C), 122.5, 70.8, 21.8, 15.6 ($C_{18}H_{16}O_3NF_3$); HRMS (EI): m/z [M-NO- C_3H_6]⁺ calcd. for $C_{15}H_{10}O_2F_3$: 279.0633, found 279.0634.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 3-methoxybenzoate (3g): yellow oil, 247.4 mg (79%); IR (cm⁻¹) \bar{v} 3075, 2919, 2840, 1744, 1599, 1488, 1455, 1365, 1295, 1236, 1211, 1169, 1021, 880, 751, 694; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.05 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 6.8 Hz, 2H), 7.04 (t, J = 6.4 Hz, 2H), 5.15 (s, 2H), 3.95 (s, 3H), 1.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.1, 159.8, 155.2, 149.0, 134.3, 132.3, 130.5, 129.6, 128.7, 125.8, 122.7, 120.1, 119.0, 112.1, 70.6, 55.9, 21.8, 15.6; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉NO₄: 313.1314, found 313.1317.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 3-chlorobenzoate (3h): white oil, 218.8 mg (69%); IR (cm⁻¹) \bar{v} 3068, 2920, 2851, 1738, 1575, 1453, 1370, 1285, 1243, 1170, 1061, 882, 790, 739; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.19 (s, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.48 (t, J = 8.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 5.09 (s, 2H), 1.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 163.8, 155.5, 149.1, 134.8, 133.7, 131.4, 130.4, 130.3, 130.2, 130.0, 129.1, 128.4, 126.3, 122.5, 70.9, 21.8, 15.7 (C₁₇H₁₆O₃NCl); HRMS (EI): m/z [M-NO-C₃H₆]⁺ calcd. for C₁₄H₁₀O₂³⁵Cl: 245.0369, found 245.0365.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 2-methoxybenzoate (3i): yellow oil, 244.2 mg (78%); IR (cm⁻¹) \bar{v} 3075, 2919, 2841, 1759, 1599, 1488, 1455, 1366, 1236, 1210, 1174, 1021, 880, 750; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.05 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.55 (dt, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.36 (dt, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.28–7.26 (m, 1H), 7.26–7.23 (m, 1H), 7.04 (t, J = 6.8 Hz, 2H), 5.16 (s, 3H), 3.94 (s, 3H), 1.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.2, 159.9, 155.4, 149.1, 134.3, 132.4, 130.6, 129.7, 128.8, 125.9, 122.8, 120.2, 119.1, 77.2, 70.7, 56.0, 21.9, 15.8; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉NO₄: 313.1314, found 313.1315.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 2-methylbenzoate (3j): yellow oil, 219.9 mg (74%); IR (cm⁻¹) \bar{v} 3066, 2919, 2851, 1736, 1487, 1454, 1453, 1362, 1239, 1212, 1175, 1040, 880, 735; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.21 (d, J = 8.0 Hz, 1H), 7.51–7.46 (m, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.34–7.27 (m, 3H), 7.21 (d, J = 7.6 Hz, 1H), 5.12 (s, 2H), 2.68 (s, 3H), 1.79 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.5, 155.3, 149.1, 141.4, 132.8, 132.0, 131.4, 130.5, 129.9, 128.9, 128.4, 126.0, 125.9, 122.7, 70.7, 22.0, 21.7, 15.6; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉N₂O₃: 297.1365, found 297.1366.

2-propanone,*O*-((**2-(2-chloro-benoyloxy)phenyl)methy)oximes** (**3k**): yellow oil, 193.4 mg (61%); IR (cm⁻¹) \bar{v} 3066, 2921, 2871, 1747, 1590, 1489, 1366, 1284, 1213, 1239, 1174, 1111, 1032, 1071, 918, 879, 745; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.11 (d, *J* = 7.6 Hz, 1H), 7.55–7.47 (m, 3H), 7.41–7.36 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.27–7.24 (m, 1H), 5.13 (s, 2H), 1.80 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 162.7, 154.6, 148.0, 133.7, 132.3, 131.2, 130.5, 129.5, 129.2, 128.2, 128.1, 125.8, 125.3, 121.6, 60.8, 20.9, 14.8 (C₁₇H₁₆O₃NCl); HRMS (EI): *m/z* [M-NO-C₃H₆]⁺ calcd. for C₁₄H₁₀O₂³⁵Cl: 245.0369, found 245.0366.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl 2,3,4,5-tetrafluorobenzoate (31): yellow oil, 181.1 mg (51%); IR (cm⁻¹) \bar{v} 3081, 2923, 2854, 1741, 1627, 1524, 1484, 1367, 1192, 1087, 1016, 879, 742; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.83–7.75 (m, 1H), 7.49 (dd, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.40 (dt, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.31 (dt, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.22 (dd, J_1 = 8.0 Hz, J_2 = 0.8 Hz, 1H), 5.08 (s, 2H), 1.78 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 160.3, 155.6, 149.8, 148.7, 147.2, 142.9, 130.6, 130.3, 129.2, 126.7, 122.3, 114.6, 113.8 (d, J = 34.0 Hz), 113.6 (d, J = 35.0 Hz), 70.77, 21.81, 15.65; HRMS (EI): m/z [M⁺] calcd. for C₁₇H₁₃NO₃F₄: 355.0832, found 355.0834.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl thiophene-2-carboxylate (2r): yellow oil, 176.3 mg (61%); IR (cm⁻¹) \bar{v} 3102, 2963, 2930, 2865, 1707, 1491, 1218, 1006, 979, 875, 822, 732, 755; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.91 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 5.2 Hz, 1H), 7.41 (d, J = 7.2 Hz, 1H), 7.31 (t, J = 6.4 Hz, 1H), 7.23–7.15 (m, 2H), 7.11 (t, J = 7.0 Hz, 1H), 5.05 (s, 2H), 1.73 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 159.5, 154.6, 147.8, 133.8, 132.6, 131.8, 129.6, 129.0, 128.0, 127.1, 125.2, 121.6, 69.7, 20.8, 14.7 (C₁₅H₁₅O₃NS); HRMS (EI): m/z [M-NO-C₃H₆]⁺ calcd. for C₁₂H₉O₂S: 217.0323, found 217.0317.

1-(2-acetoxyphenyl)-5-phenyl-4-propyl-1*H***-pyrazole-3-carboxylate (3n)**: white solid, 231.9 mg (75%); m.p. 62–64 °C; IR (cm⁻¹) \bar{v} 3062, 2933, 2865, 1720, 1637, 1491, 1449, 1303, 1140, 974, 878, 825, 765, 704; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.87 (d, *J* = 16.0 Hz, 1H), 7.61–7.57 (m, 2H), 7.48 (dd, *J*₁ = 7.6 Hz, *J*₂ = 0.8 Hz,, 1H), 7.44–7.42 (m, 3H), 7.36 (dt, *J*₁ = 8.0 Hz, *J*₂ = 1.6 Hz, 1H), 7.28–7.26 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 16.0 Hz, 1H), 5.10 (s, 2H), 1.85 (s, 3H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.3, 155.7, 148.9, 146.7, 134.2, 130.8, 130.4, 129.8, 129.1 (2C), 128.9, 128.4 (2C), 126.0, 122.5, 117.1, 70.6, 21.9, 15.8; HRMS (EI): *m/z* [M⁺] calcd. for C₁₉H₁₉NO₃: 309.1365, found 309.1364.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl acetate (3p): yellow oil, 163.6 mg (74%); IR (cm⁻¹) \bar{v} 2921, 2852, 1764, 1488, 1453, 1366, 1203, 1166, 1010, 879, 750; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.44 (dd, J_1 = 7.6 Hz, J_2 = 0.8 Hz,1H), 7.33 (dt, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 5.03 (s, 2H), 2.30 (s, 3H), 1.86 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 169.3, 155.4, 148.9, 130.3, 129.9, 128.9, 126.0, 122.4, 70.5, 21.8, 20.9, 15.6; HRMS (EI): m/z [M⁺] calcd. for C₁₂H₁₅NO₃: 221.1052, found 221.1050.

2-(((propan-2-ylideneamino)oxy)methyl)phenyl propionate (3q): yellow oil, 148.1 mg (63%); IR (cm⁻¹) \bar{v} 2984, 2919, 2881, 1759, 1488, 1454, 1364, 1174, 1136, 1071, 878, 752; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.43 (dd, J_1 = 7.6 Hz, J_2 = 1.6 Hz, 1H), 7.32 (dt, J_1 = 7.6 Hz, J_2 = 1.6 Hz,, 1H), 7.22 (dt, J_1 = 7.2 Hz, J_2 = 1.2 Hz, 1H), 7.07 (dd, J_1 = 8.0 Hz, J_2 = 1.2 Hz,, 1H), 5.02 (s, 2H), 2.60 (q, J = 7.6 Hz, 2H), 1.86 (s, 3H) , 1.85 (s, 3H) , 1.27 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.2, 157.3, 155.4, 142.4, 133.5, 131.5, 130.2, 129.6, 128.5, 123.2, 114.9, 113.7, 70.6, 55.6, 21.7, 15.6; HRMS (EI): m/z [M⁺] calcd. for C₁₃H₁₇NO₃: 235.1208, found 235.1199.

2.4 Investigation on the substrate scope of masked aralkylalcohols (Scheme 4).

General procedure: A mixture of substrate 1 (1.0 mmol), 2 (2.0 mmol), Pd(OAc)₂ (0.10 mmol), and K₂S₂O₂ (3.0 mmol) was dissolved in CH₃CN (6 mL), then the reaction mixture was heated at 80 °C for 10 h. Upon completion of the reaction, the mixture was dropped into the saturated NaHCO₃ solution (30 mL). The solution was extracted with ethyl acetate (25 mL×3), and then the combined organic layers were dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to supply the desired product **4**.

5-methyl-2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4a): yellow solid, 243.7 mg (82%); m.p. 34–36 °C; IR (cm⁻¹) \bar{v} 3060, 2921, 2854, 1735, 1450, 1365, 1237, 1115, 1060, 1024, 880, 705; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.20 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.37 (d, J = 7.6 Hz, 1H), 7.10–7.04 (m, 2H), 5.07 (s, 2H), 2.38 (s, 3H), 1.75 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.2, 155.4, 149.2, 139.4, 133.6, 130.3 (2C), 130.1, 129.7, 128.6 (2C), 127.4, 126.9, 123.3, 70.8, 21.8, 21.3, 15.7; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉NO₃: 297.1365, found 297.1371.

5-chloro-2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4b): yellow solid, 197.0 mg (62%); m.p. 70–72 °C; IR (cm⁻¹) \bar{v} 3069, 2966, 2923, 2866, 1734, 1601, 1485, 1451, 1255, 1217, 1058, 895, 699; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.18 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.26–7.23 (m, 2H), 5.05 (s, 2H), 1.75 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.5, 155.7, 149.4, 133.9, 133.8, 130.7, 130.3 (2C), 129.3, 129.0, 128.7 (2C), 126.3, 123.1, 70.1, 21.7, 15.6 (C₁₇H₁₆O₃NCl); HRMS (EI): *m/z* [M-NO-C₃H₆]⁺ calcd. for C₁₄H₁₀O₂³⁵Cl: 245.0369, found 245.0327.

5-fluoro-2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4c): white solid, 180.7 mg (60%); m.p. 68–70 °C; IR (cm⁻¹) \bar{v} 3075, 2948, 2923, 2853, 1729, 1599, 1500, 1452, 1248, 1144, 1062, 986, 873, 823, 702; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.22–8.18 (m, 2H), 7.65 (t, *J* = 9.2 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 2H), 7.47–7.43 (m, 1H), 7.04–7.69 (m, 2H), 5.06 (s, 2H), 1.76 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.5, 162.4 (d, ¹*J*_{CF} = 246.3 Hz), 155.5, 149.8 (d, ³*J*_{CF} = 10.9 Hz), 133.8, 131.0 (d, ³*J*_{CF} = 9.4 Hz), 130.3 (2C), 129.1, 128.6 (2C), 126.5 (d, ⁴*J*_{CF} = 3.5 Hz), 113.0 (d, ²*J*_{CF} = 20.9 Hz), 110.6 (d, ²*J*_{CF} = 24.3 Hz), 70.2, 21.7, 15.6; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₇H₁₆NO₃F: 301.1114, found 301.1119.

4-methyl-2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4d): yellow solid, 222.8 mg (74%); m.p. 36–38 °C; IR (cm⁻¹) \bar{v} 2920, 2858, 1734, 1498, 1450, 1262, 1194, 1059, 1024, 871, 705; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.24–8.19 (m, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.51 (q, J = 7.6 Hz, 2H), 7.29 (s, 1H), 7.20–7.17 (m, 1H), 7.10 (d, J = 8.0 Hz, 1H), 5.08 (s, 2H), 2.38 (s, 3H), 1.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.1, 155.3, 147.0, 135.7, 133.5, 130.6, 130.2

(2C), 129.9, 129.6, 129.5, 128.5 (2C), 122.3, 70.9, 21.8, 21.0, 15.6; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₈H₁₉NO₃: 297.1368, found 297.1368.

4-bromo-2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4e): yellow oil, 246.9 mg (68%); IR (cm⁻¹) \bar{v} 3066, 2923, 2853, 1738, 1478, 1363, 1261, 1170, 1055, 1023, 877, 705; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.19 (d, *J* = 7.6 Hz, 2H), 7.67–7.60 (m, 2H), 7.53–7.46 (m, 3H), 7.11 (d, *J* = 8.8 Hz, 1H), 5.06 (s, 2H), 1.80 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.6, 155.9, 147.9, 133.8, 132.9, 132.5, 131.7, 130.3 (2C), 129.1, 128.6 (2C), 124.3, 119.2, 69.9, 29.7, 21.7, 15.7; HRMS (EI): *m/z* [M⁺] calcd. for C₁₇H₁₆NO₃⁸¹Br: 363.0293, found 363.0300.

3-methyl-2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4f): white solid, 235.8 mg (81%); m.p. 96–98 °C; IR (cm⁻¹) \bar{v} 3068, 2956, 2918, 2853, 1729, 1465, 1450, 1267, 1224, 1065, 985, 906, 780, 702; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.22 (d, J = 6.8 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 7.2 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 5.12 (s, 2H), 2.48 (s, 3H), 1.73 (s, 3H), 1.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.3, 155.0, 150.4, 140.2, 133.5, 130.3 (2C), 129.7, 129.0 (2C), 128.6, 128.1, 128.0, 120.4, 67.1, 21.8, 20.0, 15.4; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉NO₃: 297.1365, found 297.1364.

3-fluoro-2-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4g): yellow solid, 189.7 mg (63%); m.p. 93–95 °C; IR (cm⁻¹) \bar{v} 3065, 2990, 2958, 2922, 2852, 1731, 1618, 1468, 1365, 1250, 1070, 996, 922, 867, 786, 703; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.15–8.12 (m, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 2H), 7.32–7.27 (m, 1H), 7.00–6.92 (m, 2H), 5.07 (s, 2H), 1.59 (s, 3H), 1.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.8, 161.9 (d, ¹*J*_{CF} = 248.0 Hz), 155.3, 151.1 (d, ³*J*_{CF} = 6.6 Hz), 133.7, 130.3 (2C), 129.7 (d, ³*J*_{CF} = 10.0 Hz), 129.4,128.6 (2C), 118.8 (d, ³*J*_{CF} = 3.5 Hz), 118.6 (d, ²*J*_{CF} = 17.5 Hz), 113.1 (d, ²*J*_{CF} = 22.3 Hz), 63.7, 21.7, 15.4; HRMS (EI): *m*/*z* [M⁺] calcd. for C₁₇H₁₆NO₃F: 301.1114, found 301.1117.

2-(1-((propan-2-ylideneamino)oxy)ethyl)phenyl benzoate (4h): yellow oil, 216.8 mg (73%); IR (cm⁻¹) \bar{v} 3070, 2977, 2928, 1734, 1487, 1449, 1257, 1213, 1061, 936, 751, 705, 670; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.22 (d, J = 7.6 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 8.0 Hz, 2H), 7.47 (dd, J_I = 7.6 Hz, J_2 = 2.0 Hz, 1H), 7.34 (td, J_I = 7.6 Hz, J_2 = 2.0 Hz, 1H), 7.29 (dd, J_I = 7.6 Hz, J_2 = 1.2 Hz, 1H), 7.19 (dd, J_I = 8.0 Hz, J_2 = 1.2 Hz, 1H), 5.45 (q, J = 6.8 Hz, 1H), 1.83 (s, 3H), 1.76 (s, 3H) , 1.51 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.0, 154.8, 148.0, 135.7, 133.6, 130.3 (2C), 129.6, 128.6 (2C), 128.1, 127.2, 126.1, 122.7, 75.3, 21.8, 21.1, 15.7 (C₁₈H₂₀NO₃); HRMS (EI): m/z [M-NO-C₃H₆]⁺ calcd. for C₁₅H₁₄O₂: 226.0994, found 226.0967.

3-((propan-2-ylideneamino)oxy)-2,3-dihydro-1H-inden-4-yl benzoate (4i): yellow solid, 219.5 mg (71%); m.p. 85–87 °C; IR (cm⁻¹) \bar{v} 3061, 2921, 2851, 1736, 1469, 1450, 1263, 1226, 1170, 1065, 1024, 705; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.20 (d, J = 7.6 Hz, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 5.79–5.76 (m, 1H), 3.19–3.11 (m, 1H), 2.93–2.85 (m, 1H), 2.52–2.42 (m, 1H), 2.27–2.18 (m, 1H), 1.55 (s, 6H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.7, 154.4, 148.4, 147.3, 134.1, 133.2, 130.3 (2C), 130.0, 129.9, 128.4 (2C), 122.5, 120.2, 84.6, 32.3, 30.5, 21.5, 15.4; HRMS (EI): *m/z* [M⁺] calcd. for C₁₉H₁₉NO₃: 309.1365, found 309.1367.

2-(phenyl((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4j): yellow oil, 214.9 mg (71%); IR (cm⁻¹) \bar{v} 3065, 3028, 2910, 1735, 1484, 1450, 1258, 1210, 1170, 1059, 1023, 927, 753, 699; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.07 (d, J = 7.2 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 7.40–7.34 (m, 3H), 7.28–7.26 (m, 1H), 7.25–7.20 (m, 4H), 6.42 (s, 1H), 1.86 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.7, 155.6, 148.7, 140.5, 133.9, 133.5, 130.3 (2C), 129.5, 128.7, 128.6, 128.4 (2C), 128.2 (2C), 127.5, 127.5 (2C), 125.9, 123.0, 81.4, 21.8, 16.0 (C₂₃H₂₂NO₃); HRMS (EI): m/z [M-NO-C₃H₆]⁺ calcd. for C₂₀H₁₆O₂: 288.1150, found 288.1114.

2-methoxy-6-(((propan-2-ylideneamino)oxy)methyl)phenyl benzoate (4k): yellow oil, 279.8 mg (84%); IR (cm⁻¹) \bar{v} 3063, 2919, 2851, 1734, 1497, 1450, 1262, 1174, 1060, 1031, 878, 706; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.20 (d, *J* = 7.2 Hz, 2H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 8.8 Hz, 1H), 7.02 (d, *J*₁ = 3.2 Hz, 1H), 6.89 (dd, *J*₁ = 8.8 Hz, *J*₂ = 3.2 Hz, 1H),

5.07 (s, 2H), 3.83 (s, 3H), 1.79 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 172.7, 155.3, 149.0, 130.3, 129.9, 128.8, 125.9, 122.4, 70.5, 27.6, 21.8, 15.6, 9.1; HRMS (EI): *m/z* [M⁺] calcd. for C₁₈H₁₉NO₄: 333.1314, found 333.1313.

2.5 Investigation on the substrate scope of extended aralkylalcohols (Scheme 5)

General procedure: A mixture of substrate **1** (1.0 mmol), **2** (2.0 mmol), $Pd(OAc)_2$ (0.10 mmol) and $K_2S_2O_2$ (3.0 mmol) was dissolved in CH₃CN (6 mL), then the reaction mixture was heated at 80 °C for 10 h. Upon completion of the reaction, the mixture was dropped into the saturated NaHCO₃ solution (30 mL). The solution was extracted with ethyl acetate (25 mL×3), and then the combined organic layers were dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to supply the desired product **5**.

2-(2-((propan-2-ylideneamino)oxy)ethyl)phenyl benzoate (5c): yellow oil, 204.9 mg (69%); IR (cm⁻¹) \bar{v} 2972, 2930, 2877, 1655, 1451, 1365, 1263, 1215, 1171, 1063, 831, 753; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.25 (d, J = 6.8 Hz, 2H), 7.65 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 8.0 Hz, 2H), 7.35 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.30 (dt, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.23 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.18 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 4.24 (dt, $J_1 = 6.8$ Hz, $J_2 = 2.4$ Hz, 2H), 2.96 (t, J = 7.2 Hz, 2H), 1.79 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 165.1, 155.0, 149.5, 133.6, 131.1, 131.0, 130.3 (2C), 129.6, 128.6 (2C), 127.5, 126.1, 122.4, 72.6, 30.3, 21.8, 15.7; HRMS (EI): m/z [M⁺] calcd. for C₁₈H₁₉NO₃: 297.1365, found 297.1367.

2-(3-((propan-2-ylideneamino)oxy)propyl)phenyl 4-methoxybenzoate (5d): yellow oil, 143.3 mg (42%); IR (cm⁻¹) \bar{v} 3209, 2921, 2853, 1728, 1605, 1510, 1456, 1252, 1162, 1068, 1017, 846, 763; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.17 (d, J = 9.2 Hz, 2H), 7.30 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.22 (td, $J_1 = 8.8$ Hz, $J_2 = 1.6$ Hz, 2H), 7.13 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 6.99 (d, J = 9.2 Hz, 2H), 4.01 (t, J = 6.4 Hz, 2H), 3.90 (s, 3H), 2.67 (t, J = 7.6 Hz, 2H), 1.94 (t, J = 8.0 Hz, 2H), 1.80 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 164.7, 163.8, 154.4, 149.2, 134.0, 132.2 (2C), 130.3, 127.0, 125.9, 122.4, 121.8, 113.8 (2C), 72.4, 55.4, 29.6, 26.8, 21.7, 15.3; HRMS (EI): m/z [M⁺] calcd. for C₂₀H₂₃NO₄: 341.1627, found 341.1605.

3. Selectively removal of the acetoxime directing group (Scheme 6)

Procedure: To a mixture of compound **3a** (141.5mg, 0.5 mmol) in acetonitrile (4.0 mL) containing water (1.0 mL), molybdenum hexacarbony (132.0 mg, 0.5 mmol) was added. The flask was evacuated and backfilled with N₂ three times and then heated at reflux. The reaction was nonitored by TLC (silica gel, eluent: EtOAc/hexanes = 1:5). On completion of the reaction, silica gel (0.3 g) was added to the cooled mixture. After removal of the solvent *in vacuo*, the residue was purified by flash column chramatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to give the corresponding product **6**.

2-(hydroxymethyl)phenyl benzoate (6): white solid, 90.1 mg (79%); m.p. 71–73 °C; IR (cm⁻¹) \bar{v} 3338, 3064, 3036, 2957, 1685, 1598, 1455, 1373, 1273, 1180, 1107, 869, 749, 707; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.13 (s, 1H), 8.07 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 (dd, $J_I = 1.2$ Hz, $J_2 = 7.6$ Hz, 1H), 7.30 (t, J = 8.4 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 5.38 (s, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ 168.8, 155.6, 133.6, 132.3, 131.2, 130.0 (2C), 129.2, 128.5 (2C), 121.7, 120.6, 117.8, 63.7; HRMS (EI): m/z [M⁺] calcd. for C₁₄H₁₂O₃: 228.0786, found 228.0785.

4. Kinetic isotope effect experiment (Scheme 7)

Procedure: A mixture of substrate **1a** (0. 5 mmol), **1a'**- d_7 (0. 5 mmol), Pd(OAc)₂ (0.1 mmol) and K₂S₂O₈ (3.0 mmol) was dissolved in CH₃CN (6 mL), then the reaction mixture was heated at 80 °C for 40 min. Upon completion of the reaction, the mixture was dropped into the saturated NaHCO₃ solution (30 mL). The solution was extracted with ethyl acetate (25 mL×3), and then combined organic layers were dried over anhydrous MgSO₄. Finally, the solution was concentrated *in vacuo* to provide a crude product, which was purified *via* a column chromatography on silica gel (eluents: petroleum ether/ethyl acetate 20:1) to supply the desired product. The product distribution ($k_H/k_D = 3.44$) was analyzed by ¹H NMR.

5. All Copies of Spectra

5.1 Copies of the spectra for Scheme 3

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions

1392 formula(e) evaluated with 89 results within limits (all results (up to 1000) for each mass) Elements Used:

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 838 formula(e) evaluated with 34 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-18 H: 0-19 N: 0-1 0:0-3 JYF-8-219 20160387 429 (7.150) Cm (429-(38+73)) GCT Premier TOF MS EI+ 1.94e+004 119.0486 100 225.0912 91.0548 1,36.0529 2,26.0958 56.0496 92.0581 107.0503 223.08 78.0461 121.0421 149.0299 162.0914 297.1362 m/z 270 -1.5 Minimum: 0.10 100.00 5.0 50.0 Maximum: 10.0 RA Calc. Mass PPM DBE i-FIT Formula Mass mDa

Single Mass Analysis

328.1051 0.12

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

328.1059

-0.8

5546028.5 C17 H16 N2 O5

N

Monoisotopic Mass, Odd and Even Electron Ions 1947 formula(e) evaluated with 103 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-17 H: 0-16 N: 0-2 0:0-5 JYF-8-228 20160639 404 (6.733) Cm (404-(142+193)) GCT Premier TOF MS EI+ 2.03e+004 150.0190 100 256 120.0441 257.0645 62 0925 8.0868 272.0572 -----226.0891 240.0671 207.0808 298.1179 328.1051 -220 230 290 310 250 Minimum: 0.11 -1.5 5.0 Maximum: 100.00 10.0 50.0 Mass RA Calc. Mass PPM DBE Formula mDa i-FIT

-2.4

11.0

 Mass
 Calc. Mass
 mDa
 PPM
 DBE
 i-FIT
 Formula

 301.1119
 301.1114
 0.5
 1.7
 10.0
 n/a
 C17 H16 N O3 F

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 254 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass)

S25

S26

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron IonsCI462 formula(e) evaluated with 29 results within limits (all results (up to 1000) for each mass)Elements Used:C: 0-17H: 0-16N: 0-1O: 0-335CI: 0-137CI: 0-1

N___Me

Me

3h

0

Single Mass Analysis

8.0

7.5

6.5

6.0

7.0

5.5

5.0

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 333 formula(e) evaluated with 29 results within limits (all results (up to 1000) for each mass) Elements Used:

.N. Me 85 Мe 2 473 798 3k 2 7.1 7.6 7.2 7.5 7.4 fl (ppm) 7.3 -5.133 123 2.00-6.00-F-00.1 00.0 8.8

4.0 fl (ppm)

4.5

3.0

3.5

2.5

2.0

1.5

0.5

1.0

0.0

S32

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions

Minimum						-1.5
Maximum	:		5.0		10.0	50.0
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula
355.0834	355.0832	0.2	0.6	10.0	n/a	C17 H13 N O3 F4

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Monoisotopic Mass, Odd and Even Electron Ions 702 formula(e) evaluated with 48 results within limits (all results (up to 1000) for each mass) Elements Used:

S37

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 766 formula(e) evaluated with 49 results within limits (all results (up to 1000) for each mass) Elements Used:

5.2 Copies of the spectra for Scheme 4

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 991 formula(e) evaluated with 58 results within limits (all results (up to 1000) for each mass)

S43

Single Mass Analysis

Tolerance = 5.0 mDa 1

N. Me Me Me 4d

DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 384 formula(e) evaluated with 31 results within limits (all results (up to 1000) for each mass) **Elements Used:** C: 0-18 H: 0-19 N: 0-1 0:0-3 S GCT Premier 2-32 20153069 138 (2.300) Cm (138-(23+216)) TOF MS EI+ 1.05e+004 105.0334 10

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 96 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used:

297.1364 4.17 297.1365 -0.1 -0.3 10.0 2773157.8 C18 H19 N O3

S49

Single Mass Analysis

Tolerance = 5.0 mDa 1 DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 103 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass) Elements Used: 0:0-3 C: 0-18 H: 0-19 N: 0-1 Waters GCT Premier JYF-6-311 20160689 193 (3.217) Cm (193-(316+321)) 105.0339 100

Single Mass Analysis

288.1114 21.80

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

288.1150

-3.6

-12.5

121.1

C20 H16 O2

5.3 Copies of the spectra for Scheme 5

S57

Multiple Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 3398 formula(e) evaluated with 162 results within limits (all results (up to 1000) for each mass)

5.4 Copies of the spectra for Scheme 6

5.5 Copies of the spectra for Scheme 7

