Supporting information

Aqueous nickel sequestration and release during structural Fe(II) hydroxides remediation:

the roles of coprecipitation, reduction and substitution

Binbin Shao^a, Ying Chen^a, Deli Wu^{*a}, Hongping He^a, Chaomeng Dai^b, Yalei Zhang^a

^aState Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, P.R. China
^bCollege of Civil Engineering, Tongji University, Shanghai 200092, P.R. China
*Corresponding author. Tel.: +86 02165984569; E-mail: wudeli@tongji.edu.cn

Table S1: pH variations of SFH-Ni²⁺ mixture in the presence and absence of anions

Text S1: Comparison of the K_{sp} of Ni_xFe_(1-x)(OH)₂ and Fe^{III}_(1+2x/3)Fe^{II}_(1-x)(OH)₅ precipitations

Text S2: Determination of E(Ni²⁺/Ni) and E(NO₃⁻/NO) based on the conditions of the corresponding system

Fig. S1: SEM images of solid phases of (a) SFH(1:1) (b) SFH(1:2) (c) SFH(1:3)

Fig. S2: Adsorption of Ni(II) on SFH under anoxic conditions (SFH = 0.1 g/L; initial Ni²⁺ concentration =

2.0–250 mg/L; contact time = 20 min; at 25 °C)

Fig. S3: Effect of (dissolved oxygen) DO on Ni(II) removal by SFH(1:2)

(Initial Ni²⁺=100 mg/L, SFH = 2 mM)

Fig. S4: XRD pattern of oxidized solid product of SFH(1:2) with NO₃-(SFH= 2 mM, NO₃-/Fe²⁺=10:1)

Fig. S5: FT-IR spectra of SFH(1:2) and PO_4^{3-} or CO_3^{2-} loaded SFH(1:2)

Conditions		Initial pH	End pH (60 min)
SFH(2:1)-Ni ²⁺		6.6	5.8
SFH(1:1)-Ni ²⁺		7.9	6.2
SFH(1:2)-Ni ²⁺		9.1	6.7
SFH(1:3)-Ni ²⁺		11.2	10.2
SFH(1:4)-Ni ²⁺		11.6	10.8
Ni(OH) ₂ -Fe ²⁺		10.5	10.2
Ni(OH) ₂ -Fe ³⁺		10.5	9.3
CO ₃ ²⁻ / SFH(1:2)	1:10	9.2	8.1
	1:1	9.9	8.6
	10:1	10.5	9.1
PO ₄ ³⁻ / SFH(1:2)	1:10	9.1	8.0
	1:1	9.6	8.4
	10:1	10.9	9.6
NO ₃ ^{-/} SFH(1:2)	1:10	9.0	6.5
	1:1	8.9	5.8
	10:1	8.7	5.1

Table S1 pH variations of SFH-Ni $^{2+}$ mixture in the presence and absence of anions

Text S1. Comparison of the K_{sp} of Ni_xFe_(1-x)(OH)₂ and Fe^{III}_(1+2x/3)Fe^{II}_(1-x)(OH)₅ precipitations

For the two precipitates, the precipitation-dissolution equilibrium could be described as:

$$Ni_{x}Fe_{(1-x)}(OH)_{2} \rightleftharpoons xNi^{2+} + (1-x)Fe^{2+} + 2OH^{-} \qquad K_{sp} = [Ni^{2+}]^{x}[Fe^{2+}]^{1-x}[OH^{-}]^{2}$$
(1)

$$Fe^{III}_{(1+2x/3)}Fe^{II}_{(1-x)}(OH)_5 \rightleftharpoons (1+2x/3)Fe^{3+} + (1-x)Fe^{2+} + 5OH^{-} \qquad K_{sp} = [Fe^{3+}]^{1+2x/3}[Fe^{2+}]^{1-x}[OH^{-}]^5$$
(2)

where $[Ni^{2+}]$, $[Fe^{2+}]$, $[Fe^{3+}]$ and $[OH^{-}]$ are the concentrations of dissolved Ni^{2+} , Fe^{2+} , Fe^{3+} and OH^{-} , respectively, and K_{sp} is the solubility product. Based on the K_{sp} of $Fe(OH)_2$, $Ni(OH)_2$ and $Fe(OH)_3$,

$$K_{sp}[Fe(OH)_2] = [Fe^{2+}][OH^{-}]^2 = 8.0 \times 10^{-16}$$
(3)

$$K_{sp}[Ni(OH)_2] = [Ni^{2+}][OH^{-}]^2 = 2.0 \times 10^{-15}$$
(4)

$$K_{sp}[Fe(OH)_3] = [Fe^{3+}][OH^-]^3 = 4.0 \times 10^{-38}$$
(5)

eq 1 could be rewritten as eq 6.

$$K_{sp}[Ni_{x}Fe_{(1-x)}(OH)_{2}] = [Ni^{2+}]^{x}[Fe^{2+}]^{1-x}[OH^{-}]^{2}$$

= Error! = (K_{sp}[Fe(OH)_{2}]) · Error! (6)

Note that $0 \le x \le 1$ and **Error!** = 2.5>1, thus

$$8.0 \times 10^{-16} < K_{sp}[Ni_xFe_{(1-x)}(OH)_2] < 2.0 \times 10^{-15}.$$

Similarly, eq 2 could be rewritten as eq 7.

$$K_{sp}[Fe^{III}_{(1+2x/3)}Fe^{II}_{(1-x)}(OH)_{5}] = [Fe^{3+}]^{1+2x/3}[Fe^{2+}]^{1-x}[OH^{-}]^{5}$$

= Error!

$$= (K_{sp}[Fe(OH)_3]) \cdot (K_{sp}[Fe(OH)_2]) \cdot \left(\text{Error!} \right)^{X}$$
(7)

Note that -1.5 < x < 1 and **Error!** $= 1.5 \times 10^{-10} < 1$, thus

$$4.7 \times 10^{-63} < K_{sp} [Fe^{III}_{(1+2x/3)} Fe^{II}_{(1-x)} (OH)_5] < 1.7 \times 10^{-38}$$

Based on the calculations: $K_{sp}[Fe^{III}_{(1+2x/3)}Fe^{II}_{(1-x)}(OH)_5] \ll K_{sp}[Ni_xFe_{(1-x)}(OH)_2]$, thus the substitution of Ni²⁺ in Ni_xFe_(1-x)(OH)₂ by Fe³⁺ is favorable:

$$Ni_{x}Fe_{(1-x)}(OH)_{2} + (1+\overline{3}x)Fe^{3+} + 3H_{2}O \rightarrow Fe^{III}_{(1+2x/3)}Fe^{II}_{(1-x)}(OH)_{5} + xNi^{2+} + 3H^{+}$$
(8)

Text S2. Determination of E(Ni²⁺/Ni) and E(NO₃⁻/NO) based on the conditions of the corresponding system

The electrode reaction for Ni²⁺ reduction could be described as:

$$Ni^{2+} + 2e^{-} \leftrightarrows Ni, \qquad E^{\theta}(Ni^{2+}/Ni) = -0.257 V.$$

Under alkaline circumstance, E(Ni²⁺/Ni) could be expressed as follows using Nernst equation,

$$E(Ni^{2+}/Ni) = E^{\theta}(Ni^{2+}/Ni) + \frac{0.059 \text{ V}}{2} lg[Ni^{2+}]$$
$$= E^{\theta}(Ni^{2+}/Ni) + \frac{0.059 \text{ V}}{2} lgError!$$

Note that the initial solution pH of Ni^{2+} with SFH(1:2) is 9.05, thus the concentration of OH⁻ is $10^{-4.95}$ M. Therefore,

$$E(Ni^{2+}/Ni) = -0.257 V + \frac{0.059 V}{2} lg \frac{2.0 \times 10 - 15}{10 - 9.9} = -0.398 V.$$

The reduction of NO₃⁻ by structural Fe(II) could generate NO₂⁻ and subsequent various products, including NO₂⁻, NO, NO₂ and NH₄⁺. Our previous study showed that NO_x were the predominant products at initial pH \sim 8 and Fe/N of 10:1. The conditions are similar to that in present study. Here, we take NO as a product of NO₃⁻ reduction. Under alkaline circumstance, The electrode reaction for NO₃⁻ reduction could be described as:

$$NO_3^- + 2H_2O + 3e^- \cong NO + 4OH^-$$
, $E^{\theta}(NO_3^-/NO) = -0.14 V$

E(NO₃-/NO) could be expressed as follows using Nernst equation,

$$E(NO_{3}^{-}/NO) = E^{\theta}(NO_{3}^{-}/NO) + \frac{0.059 \text{ V}}{3} \text{ lgError!}$$

= $E^{\theta}(NO_{3}^{-}/NO) + \frac{0.059 \text{ V}}{3} \text{ lg}[OH -]4 - \frac{0.059 \text{ V}}{3} \text{ lg}(p(NO)/p^{\theta})$

Note that the concentration of NO3⁻ and OH⁻ are 0.02 M and 10^{-4.95} M, respectively. Thereby,

$$E(NO_{3}-/NO) = 0.216 \text{ V} - \frac{0.059 \text{ V}}{3} \lg(p(NO)/p^{\theta})$$

Assuming that the concentration of NO is equal to that of initial NO₃⁻ (0.02 M), then $p(NO) = nRT/V = 0.02 \times 8.3145 \times 273 / (0.1 \times 10^{-4}) = 4540$ kpa. (The parameters of T and V could be seen in *section 2.2*, and $p^{\theta} = 100$ kpa). Thus,

$$\frac{0.059 \text{ V}}{3} \log(p(\text{NO})/p^{\theta}) = 0.032 \text{ V},$$

which is much less than 0.216 V. So it is determined that

$$E(NO_3^{-}/NO) \approx 0.216 \text{ V}.$$

By correcting $E(Ni^{2+}/Ni)$ and $E(NO_{3^{-}}/NO)$ to the corresponding system, we find that $E(NO_{3^{-}}/NO)$ is higher than $E(Ni^{2+}/Ni)$. It indicates that $NO_{3^{-}}$ would be easier than Ni^{2+} to be reduced by SFH.

Fig. S1 SEM images of solid phases of (a) SFH(1:1) (b) SFH(1:2) (c) SFH(1:3)

Fig. S2 Adsorption of Ni(II) on SFH under anoxic conditions (SFH = 0.1 g/L; initial Ni²⁺ concentration = 2.0-250 mg/L;

contact time = 20 min; at 25 °C).

Fig. S3 Effect of dissolved oxygen (DO) on Ni(II) removal by SFH(1:2) ((Initial Ni²⁺=100 mg/L, SFH = 2.0 mM)

Fig. S4 XRD pattern of oxidized solid product of SFH(1:2) with NO₃-(SFH=0.11 g/L, NO₃-/Fe²⁺=10:1)

Fig. S5 FT-IR spectra of SFH(1:2) and PO_4^{3-} or CO_3^{2-} loaded SFH(1:2)