Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

Large magnetic entropy change at cryogenic temperature in rare earth HoN

nanoparticles

K.P. Shinde¹, S.H. Jang¹, M. Ranot², B.B. Sinha³, J.W. Kim¹, and K.C. Chung^{1,*}

¹Powder & Ceramics Division, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea

²Materials Deformation Department, Korea Institute of Materials Science, Changwon, 51508, Republic of

Korea

³Centre of Nanoscience and Nanotechnology, University of Mumbai University, Mumbai, 400098, India

*Corresponding author email: kcchung@kims.re.kr

Figures

1

Figure S2: Isothermal magnetization isotherms (M-H) measured at different temperatures around T_C in the magnetic field of 0-5 T for HoN samples (a) H2 (b) H3 and (c) H4.

Figure S3: A set of typical M^2 vs H/M curves obtained for HoN samples (a) H2 (b) H3 and (c) H4.