Supplementary Material

Poly[platinum(IV)-*alt*-PEI]/Akt1 shRNA complexes for enhanced anticancer Therapy

Jia-Liang Zhang,^a Jia-Hui Gong,^b Lei Xing,^b Peng-Fei Cui,^b Jian-Bin

Qiao,^b Yu-Jing He,^b Jin-Yuan Lyu,^b Shunai Che,^a Tuo jin*^d and Hu-Lin Jiang*^{b,c}

^aSchool of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (P.R. China)

^bState Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, (P.R. China)

^cJiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, (P.R. China)

^dSchool of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Rd, Shanghai, 200240 (P.R. China)

Correspondence:

Hu-Lin Jiang*b,c

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.

Tel: +86-025-83271027, Fax: +86-025-83271027.

Email: jianghulin3@163.com

Tuo jin*d

School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Rd, Shanghai,

200240, P.R. China

Tel: +86-0021-34204695; Fax: +86-021-34205072

Email: tjin@sjtu.edu.cn

Materials and Methods

FTIR spectrum measurement

The FTIR spectrum of DHP was carried out using the KBr disk method in the wavelength region of 4000-400 cm⁻¹ by FTIR spectrophotometer. (Bruker, TENSOR 27)

Energy Dispersive X-Ray Spectroscopy (EDX) measurement

The EDX measurement was carried out using JEOL JEM-2100 equipped with an IN-CA x-sight at 200 kV. The area of DP/shAkt1 nanoparticles was analysed by EDX to reveal atomic components.

Endosomal buffering capacity of DP

The buffering capacity of DP was measured by acid-base titration over the pH range of 10.0 to 3.0. Briefly, 2 mg of DP and PEI 25K were dissolved in 10 mL of 0.15 M NaCl solution, respectively. The solution was brought to pH of 10.0 using 0.1 M NaOH and then titrated with 0.1 M HCl solution until the pH value decreased to 3.0. The pH of solutions was measured by a pH meter (Satorious, German). Meanwhile, 0.15 M NaCl solution, PEI 25K solution were titrated in the same way as controls, respectively.

Released Pt(II) species by MALDI-TOF-MS

DP (10 mg) was dissolved in distill water (2 mL), and then dialyzed against distill water (molecular weight cut-off = 1000 Da) in the presence of 5 mM sodium ascorbate. After dialysis for 48 h, the solution out of the dialysis bag was collected in a vial, to which 2'-deoxyguanosine 5'-monophosphate sodium salt hydrate (GG, Sigma Aldrich) was added to a final concentration of 50 μ M. The vial was kept in the dark and shaken for 24 h at 37 °C, and then aliquots were collected for MALDI-TOF-MS study (AB SCIEX TOF/TOF 5800).

Release profile of platinum from DP in vitro

The *in vitro* release of platinum from DP was evaluated as previously reported.¹ DP (50 mg) was dissolved in 2 mL PBS (pH 7.4, 100 mM), then transferred into a preswelled dialysis bag (molecular weight cut-off = 1500 Da), and immersed into 100 mL PBS (pH 7.4, 100 mM). The drug release experiment was carried out at 37 °C with stirring at 120 rpm. At indicated time points (1 h, 4 h, 12 h, 24 h, 48 h, 72 h), 1.0 mL sample solution was withdrawn and its platinum concentration was measured by ICP-MS (Agilent 7700e). Equal volume of fresh PBS was immediately replenished.

¹⁹⁵ NMR spectroscopy

For ¹⁹⁵Pt NMR measurement, DP was dissolved in D₂O at a concentration of 30 mg mL⁻¹. ¹⁹⁵Pt NMR spectra were recorded on a Bruker AVANCE-400 NMR spectrometer. Chemical shifts were externally referenced to K₂PtCl₆ in D₂O ($\delta = 0$ ppm).

Figure S1. FTIR spectrum of DHP.

Figure S2. EDX spectrum of DP/shAkt1 complexes.

Figure S3. Acid-base titration curves of NaCl, DP and PEI 25K obtained by titrating 0.2 mg mL⁻¹ aqueous solutions (starting pH 10.0, adjusted by 0.1M NaOH) of the samples in 0.15 M NaCl solution to pH 3.0 with 0.1M HCl.

Figure S4. MALDI-TOF-MS chromatogram of Pt-GG adducts obtained by the reaction of DP and 5'-GMP in the presence of sodium ascorbate. Exhibited isotopic peak pattern confirms the presence of Pt species in Pt-GG adduct.

Figure S5. ¹⁹⁵Pt NMR of DP in D₂O

Figure S6. Platinum release profiles of DP.

Table S1. The molecular weight and polydispersity index of DP.

	Mw	Mn	PDI
DP	2654	1935	1.37

Table S2. The theoretical and actual platinum(IV) prodrug content in the polymer synthesized by DHPAA and PEI 800 with different molar ratios. (means \pm SD, n=3).

Molar ratios of	Theoretical platium (IV)	Actual platium (IV)
DHPAA/PEI 800	prodrug content (wt%)	prodrug content (wt%)
1:1	35.9	35.946 ± 0.1243
0.5:1	17.95	18.0546 ± 0.0248

1. H. Song, H. Xiao, Y. Zhang, H. Cai, R. Wang, Y. Zheng, Y. Huang, Y. Li, Z. Xie and T. Liu, *Journal of Materials Chemistry B*, 2013, **1**, 762-772.