Supporting Information

A new [4+1]/[4+2]bicycliaztion strategy for accessing functionalized indeno[1,2-b]pyran-2-ones

Bo Jiang,*,a Rong Fu, Jiang-Kai Qiu, Yan Yu, Shu-Liang Wang,*,a and Shu-Jiang Tua

^aSchool of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China. Email: wangsl@jsnu.edu.cn (WSL); jiangchem@jsnu.edu.cn (BJ) Fax: +8651683500065; Tel: +8651683500065

Table of Contents

General information	S1
X-Ray Crystallography Structure of Compounds 3g	S2
General Procedure for the Synthesis of Compounds 3a	S3
Characterization Data of Compounds 3a-3k S	3-S7
General Procedure for the Synthesis of Compounds 31	S7
Characterization Data of Compounds 3l-3s S7	7-S10
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 3a-3s S11	-S29

Experimental

General Information

¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in DMSO- d_6 with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiplet), coupling constant (Hz)]. HRMS (APCI-TOF or ESI-TOF) was determined by using microTOF-Q II HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

Fig 1, X-Ray Structure of 3g

Experimental Section

Example for the synthesis of **3a**: 2-Oxo-4-phenyl-2,5-dihydroindeno[1,2-*b*]pyran-3-carbonitrile

Phthalaldehyde **1a** (1.0 mmol) was introduced in a 50-mL round flask, 2-(1-phenylethylidene) malononitrile (**2a**, 1.0 mmol), Et₃N (1.0 mmol), and DMF (8.0 mL) were then successively added and stirred at room temperature for 12 hours. After the completion of the reaction (monitored by TLC), the reaction mixture was diluted with cold water (20 mL). The solid product was collected by Büchner filtration and was purified by recrystallization from 95% EtOH to afford the desired pure indeno[1,2-*b*]pyrans **3a** as a yellow solid

Yellow solid; mp 231- 232 °C; IR (KBr, v, cm⁻¹) 3079, 2214, 1627, 1608, 1560, 1493, 1398, 1223, 1093, 827; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 7.86 (d, *J* = 7.6 Hz, 1H, ArH), 7.80-7.76 (m, 2H, ArH), 7.70 (d, *J* = 7.2 Hz, 1H, ArH), 7.65 (dd, *J*₁ = 7.6, *J*₂ = 3.6 Hz, 3H, ArH), 7.58 (q, *J* = 8.0 Hz, 2H, ArH), 3.80 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 163.6, 162.0, 159.7, 145.5, 133.2, 133.0, 131.2, 131.0, 128.9, 128.3, 128.0, 125.7, 120.8, 118.2, 115.6, 93.3, 33.0; HRMS (ESI) *m/z* calc. forC₁₉H₁₂NO₂, 286.0868 [M+H]⁺; found 286.0875.

4-(4-Fluorophenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3b)

Yellow solid; mp 237-239 °C; IR (KBr, v, cm⁻¹) 3070, 2215, 1718, 1655, 1598, 1561, 1492, 1384, 1234, 1154, 847; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 7.91-7.84 (m, 3H, ArH), 7.71 (d, *J* = 7.2 Hz, 1H, ArH), 7.65-7.54 (m, 2H, ArH), 7.50 (t, *J* = 8.8 Hz, 2H, ArH), 3.80 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 163.6 (*J*_{CF} = 248.4 Hz), 163.6, 161.0, 159.6, 145.5, 133.2, 131.1 (*J*_{CF} = 8.9 Hz), 131.1, 129.4 (*J*_{CF} = 3.2 Hz), 128.0, 125.7, 120.9, 118.2, 116.1 (*J*_{CF} = 21.9 Hz), 115.6, 93.4, 32.9; HRMS (ESI) *m/z* calc. for C₁₉H₁₁FNO₂, 304.0774 [M+H]⁺; found 304.0787.

4-(4-Chlorophenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3c)

Yellow solid; mp 254-255 °C; IR (KBr, ν, cm⁻¹) 3090, 2215, 1717, 1615, 1590, 1561, 1497, 1460, 1385, 1203, 1155, 839; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 7.87 (d, *J* = 7.2 Hz, 1H, ArH), 7.81 (d, *J* = 8.4, 2H, ArH), 7.76-7.68 (m, 3H, ArH), 7.65-7.53 (m, 2H, ArH), 3.78 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆); δ, ppm) 163.7, 160.8, 159.6, 145.5, 136.1, 133.2, 131.8, 131.1, 130.2, 129.1, 128.1, 125.7, 120.9, 118.1, 115.5, 93.4, 32.8; HRMS (ESI) *m/z* calc. for C₁₉H₁₀ClNNaO₂, 342.0298 [M+ Na]⁺; found 342.0296.

4-(2,4-Dichlorophenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3d)

Yellow solid; mp 287-289 °C; IR (KBr, v, cm⁻¹) 3049, 2224, 1717, 1621, 1569, 1543, 1477, 1377, 1282, 1104, 828; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 8.01 (s, 1H, ArH), 7.89 (d, *J* = 7.2 Hz, 1H, ArH), 7.75 (d, *J* = 8.8 Hz, 1H, ArH), 7.69 (d, *J* = 8.8 Hz, 2H, ArH), 7.65-7.56 (m, 2H, ArH), 3.63 (d, *J* = 8.4 Hz, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆); δ, ppm) 164.4, 159.0, 159.0, 145.4, 136.2, 133.1, 131.6, 131.5, 131.0, 129.8, 128.3, 128.2, 125.9, 121.1, 118.5, 114.6, 112.7, 95.2, 32.3; HRMS (ESI) *m/z* calc. for C₁₉H₁₀Cl₂NO₂, 354.0089 [M+H]⁺; found 354.0073.

4-(4-Bromophenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3e)

Yellow solid; mp 259 - 260 °C; IR (KBr, v, cm⁻¹) 2918, 2217, 1775, 1718, 1609, 1561, 1460, 1383, 1204, 1156, 828; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 7.87 (d, *J* = 8.4 Hz, 3H, ArH), 7.71 (dd, *J*₁ = 12.8, *J*₂ = 8.0 Hz, 3H, ArH), 7.63-7.55 (m, 2H, ArH), 3.78 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ, ppm) 163.7, 160.9, 159.6, 145.5, 133.2, 132.1, 131.7, 131.2, 130.4, 128.1, 125.7, 125.0, 120.9, 118.1, 115.5, 93.3, 32.8; HRMS (ESI) *m/z* calc. for C₁₉H₁₀BrNNaO₂, 385.9793 [M+Na]⁺; found 385.9767.

4-(4-Cyanophenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3f)

Yellow solid; mp > 300 °C; IR (KBr, v, cm⁻¹) 2946, 2224, 2214, 1636, 1614, 1588, 1562, 1490, 1355, 1231, 1156, 844, 772; ¹H NMR (400 MHz, DMSO- d_6 ; δ , ppm) 8.19 (s, 1H, ArH), 8.09 (d, J = 8.0 Hz, 2H, ArH), 7.88 (d, J = 8.0 Hz, 2H, ArH), 7.63 (d, J = 6.8 Hz, 1H, ArH), 7.57-7.47 (m, 2H, ArH), 3.66 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO- d_6 ; δ , ppm) 169.4, 165.6, 162.2, 158.1, 146.6, 140.0, 133.2, 131.0, 129.8, 128.1, 126.0, 122.6, 122.5, 118.8, 117.1, 113.1, 34.1.; HRMS (ESI) m/z calc. for C₂₀H₁₁N₂O₂, 311.0821 [M+H]⁺; found 311.0835.

2-Oxo-4-(p-tolyl)-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3g)

Yellow solid; mp 261-262 °C; IR (KBr, v, cm⁻¹) 3047, 2211, 1718, 1655, 1638, 1613, 1560, 1493, 1382, 1187, 1069, 837, 762; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 7.85 (d, *J* = 6.8 Hz, 1H, ArH), 7.72-7.66 (m, 3H, ArH), 7.63-7.53 (m, 2H, ArH), 7.45 (d, *J* = 8.0 Hz, 2H, ArH), 3.80 (s, 2H, CH₂), 2.44 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆; δ, ppm) 163.4, 162.1, 159.8, 145.5, 141.5, 133.3, 131.0, 130.2, 129.5, 128.4, 128.0, 125.7, 120.8, 118.2, 115.8, 92.9, 33.1, 21.0; HRMS (ESI) *m/z* calc. for C₂₀H₁₄NO₂, 300.1025 [M+H]⁺; found 300.1035.

4-(4-Methoxyphenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3h)

Yellow solid; mp 263-264 °C; IR (KBr, v, cm⁻¹) 2933, 2216, 1708, 1603, 1565, 1496, 1384, 1260, 1183, 1154, 840, 763, 726; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 7.85 (d, *J* = 6.8 Hz, 1H, ArH), 7.79 (d, *J* = 8.8 Hz, 2H, ArH), 7.70 (d, *J* = 7.3 Hz, 1H, ArH), 7.63 – 7.54 (m, 2H, ArH), 7.19 (d, *J* = 8.8 Hz, 2H, ArH), 3.89 (s, 3H, OCH₃), 3.84 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 163.3, 161.7, 160.2, 159.9, 145.4, 133.3, 130.9, 130.5, 128.0, 125.6, 125.0, 120.8, 118.2, 116.0, 114.4, 92.3, 55.5, 33.2; HRMS (ESI) *m/z* calc. for C₂₀H₁₄NO₃,

316.0974 [M+H]⁺; found 316.0946.

4-(4-(tert-Butyl)phenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3i)

Yellow solid; mp 259-260 °C; IR (KBr, v, cm⁻¹) 3056, 2959, 2223, 1724, 1611, 1588, 1572, 1491, 1462, 1379, 1199, 835, 770; ¹H NMR(400 MHz, DMSO- d_6 ; δ , ppm) 7.85 (d, J = 7.2 Hz, 1H, ArH), 7.75 (d, J = 8.4 Hz, 2H, ArH), 7.71-7.66 (m, 3H, ArH), 7.63-7.54 (m, 2H, ArH), 3.83 (s, 2H, CH₂), 1.36 (s, 9H, CH₃); ¹³C NMR (100 MHz, DMSO- d_6 ; δ , ppm) 163.9, 162.4, 160.3, 154.7, 146.1, 133.7, 131.5, 130.7, 128.8, 128.5, 126.3, 126.2, 121.3, 118.8, 116.4, 93.3, 35.3, 33.7, 31.4.; HRMS (ESI) m/z calc. for C₂₃H₂₀NO₂, 342.1494 [M+H]⁺; found 342.1486.

4-(3-Hydroxyphenyl)-2-oxo-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3j)

Yellow solid; mp 247-248 °C; IR (KBr, v, cm⁻¹) 3048, 2225, 1726, 1699, 1561, 1494, 1386, 1198, 1150, 765, 730, 611; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 10.05 (s, 1H, OH), 7.80 (d, *J* = 7.6 Hz, 1H, ArH), 7.68 (d, *J* = 7.2 Hz, 1H, ArH), 7.62-7.49 (m, 2H, ArH), 7.43 (t, *J* = 8.0 Hz, 1H, ArH), 7.14 (d, *J* = 7.6 Hz, 1H, ArH), 7.09 (s, 1H, ArH), 7.02 (dd, *J*₁ = 8.0, *J*₂ = 1.6 Hz, 1H, ArH), 3.71 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 163.5, 162.0, 159.7, 157.6, 145.3, 134.1, 133.2, 130.9, 130.1, 127.9, 125.6, 120.7, 118.7, 118.1, 118.0, 115.5, 114.8, 93.0, 33.0; HRMS (ESI) *m/z* calc. for C₁₉H₁₂NO₃, 302.0817 [M+H]⁺; found 302.0814.

2-Oxo-4-(thiophen-2-yl)-2,5-dihydroindeno[1,2-b]pyran-3-carbonitrile (3k)

Yellow solid; mp 235-236 °C; IR (KBr, ν, cm⁻¹) 3068, 2220, 1728, 1559, 1479, 1422, 1151, 785, 764, 726; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 8.23 (s, 1H, ArH), 8.13 (s, 1H, ArH), 7.82 (d, *J* = 6.4 Hz, 1H, ArH), 7.74 (d,

J = 6.4 Hz, 1H, ArH), 7.61-7.56 (m, 2H, ArH), 7.44 (s, 1H, ArH), 4.05 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 163.4, 159.9, 153.0, 145.0, 134.3, 134.0, 133.3, 133.1, 131.1, 128.8, 128.0, 125.5, 121.8, 120.7, 116.7, 89.9, 34.5; HRMS (ESI) *m/z* calc. for C₁₇H₁₀NO₂S, 292.0426 [M+H]⁺; found 292.0436.

Example for the synthesis of **31**: 2-Oxo-4-phenyl-2,5-dihydro benzo[5,6]indeno[1,2-b]pyran-3-carbonitrile

Naphthalene-2,3-dicarbaldehyde **1b** (1.0 mmol) was introduced in a 50-mL round flask, 2-(1-phenylethylidene) malononitrile (**2a**, 1.0 mmol), Et₃N (1.0 mmol), and DMF (8.0 mL) were then successively added and stirred at 0 °C for 24 hours. After the completion of the reaction (monitored by TLC), the reaction mixture was diluted with cold water (20 mL). The solid product was collected by Büchner filtration and was purified by recrystallization from 95% EtOH to afford the desired pure indeno[1,2-*b*]pyrans **31** as a yellow solid

Yellow solid; mp 247-248 °C; IR (KBr, v, cm⁻¹) 3054, 2223, 1731, 1573, 1496, 1440, 1329, 1145, 875, 748; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 8.45 (s, 1H, ArH), 8.21-8.10 (m, 2H, ArH), 8.01 (d, *J* = 7.6 Hz, 1H, ArH), 7.83-7.78 (m, 2H, ArH), 7.69-7.66 (m, 3H, ArH), 7.62 (d, *J* = 2.0 Hz, 1H, ArH), 7.59 (d, *J* = 6.8 Hz, 1H, ArH), 3.87 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 162.9, 162.0, 159.5, 139.6, 134.0, 133.0, 132.1, 131.5, 131.2, 129.1, 128.9, 128.2, 127.9, 127.8, 126.4, 124.0, 120.6, 119.3, 115.6, 94.4, 32.1; HRMS (ESI) *m/z* calc. for C₂₃H₁₄NO₂Na, 358.0844[M+Na]⁺; found 358.0840.

2-Oxo-4-fluorophenyl-2,5-dihydrobenzo[5,6]indeno[1,2-b]pyran-3- carbonitrile (3m)

Yellow solid; mp 292-293 °C; IR (KBr, v, cm⁻¹) 3063, 2223, 1729, 1573, 1493, 1417, 1227, 1160, 1101, 851; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 8.45 (s, 1H, ArH), 8.19-8.12 (m, 2H, ArH), 8.02 (d, *J* = 7.6 Hz, 1H, ArH), 7.93-7.86 (m, 2H, ArH), 7.64-7.60 (m, 2H, ArH), 7.53 (t, *J* = 8.8 Hz, 2H, ArH), 3.88 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 164.6 (*J*_{CF} = 220.0 Hz), 162.9, 161.4, 159.5, 139.3, 134.0, 131.5, 131.1, 131.0, 129.1, 127.9 (*J*_{CF} = 8.9 Hz), 127.0, 126.5, 124.0 (*J*_{CF} = 2.3 Hz), 121.2, 120.6, 119.4, 116.1 (*J*_{CF} = 21.8 Hz), 115.5, 112.6, 94.6, 32.4; HRMS (ESI) *m/z* calc. for C₂₃H₁₂FNO₂Na, 376.0750 [M+Na]⁺; found 376.0752.

Yellow solid; mp 254-256 °C; IR (KBr, v, cm⁻¹) 3083, 2221, 1716, 1634, 1455, 1397, 1065, 875, 765; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 8.42 (s, 1H, ArH), 8.19-8.09 (m, 2H, ArH), 8.00 (d, *J* = 8.0 Hz, 1H, ArH), 7.83 (d, *J* = 8.0 Hz, 2H ArH), 7.76 (d, *J* = 7.6 Hz, 2H, ArH), 7.64-7.58 (m, 2H, ArH), 3.83 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ, ppm) 163.1, 160.8, 159.4, 147.7, 139.7, 136.3, 134.1, 132.2, 131.8, 131.5, 130.3, 129.2, 128.0, 126.5, 124.1, 120.7, 119.4, 115.5, 112.7, 94.6, 32.1; HRMS (ESI) *m/z* calc. for C₂₃H₁₂CINO₂Na, 392.0454 [M+Na]⁺; found 392.0454.

2-Oxo-4- bromophenyl-2,5-dihydrobenzo[5,6]indeno[1,2-b]pyran-3- carbonitrile (30)

Yellow solid; mp 269-270 °C; IR (KBr, v, cm⁻¹) 3057, 2220, 1743, 1687, 1507, 1401, 1169, 889, 787; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 8.42 (s, 1H, ArH), 8.18-8.09 (m, 2H, ArH), 8.00 (d, *J* = 8.0 Hz, 1H, ArH), 7.89 (d, *J* = 8.4 Hz, 2H ArH), 7.75 (d, *J* = 8.4 Hz, 2H, ArH), 7.67-7.55 (m, 2H, ArH), 3.82 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ, ppm) 163.0, 160.8, 159.3, 139.6, 134.0, 132.1, 132.1, 132.0, 131.4, 130.3, 129.1, 127.9, 127.9, 126.4, 125.0, 124.0, 120.6, 119.1, 115.3, 94.4, 32.0; HRMS (ESI) *m/z* calc. for C₂₃H₁₂BrNO₂Na, 435.9944 [M+Na]⁺; found 435.9949.

2-Oxo- p-tolyl -2,5-dihydrobenzo[5,6]indeno[1,2-b]pyran-3- carbonitrile (3p)

Yellow solid; mp 232-234 °C; IR (KBr, ν, cm⁻¹) 3012, 2222, 1714, 1615, 1498, 1432, 1289, 876, 799; ¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 8.42 (s, 1H, ArH), 8.13 (t, *J* = 8.8 Hz, 2H, ArH), 8.00 (d, *J* = 7.7 Hz, 1H, ArH), 7.70 (d, *J* = 8.0 Hz, 2H, ArH), 7.64-7.57 (m, 2H, ArH), 7.48 (d, *J* = 8.0 Hz, 2H, ArH), 3.86 (s, 2H, CH₂), 2.45 (s,

3H, CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆; δ, ppm) 162.7, 162.0, 159.6, 141.4, 139.6, 134.0, 132.1, 131.5, 130.1, 129.5, 129.0, 128.3, 127.9, 127.8, 126.4, 123.9, 120.5, 119.3, 115.6, 94.2, 32.2, 21.0; HRMS (ESI) *m/z* calc. for C₂₄H₁₅NO₂Na, 372.1000 [M+Na]⁺; found 372.0998.

2-oxo- 3-hydroxyphenyl -2,5-dihydrobenzo[5,6]indeno[1,2-b]pyran-3- carbonitrile (3q)

Yellow solid; mp 298-299 °C; IR (KBr, v, cm⁻¹) 3412, 2220, 1768, 1621, 1497, 1354, 1187, 885;

¹H NMR (400 MHz, DMSO-*d*₆; δ, ppm) 10.03 (s, 1H, OH), 8.35 (s, 1H, ArH), 8.14-8.06 (m, 2H, ArH), 7.97 (d, *J* = 7.6 Hz, 1H, ArH), 7.59 (t, *J* = 8.0 Hz, 2H, ArH), 7.46 (t, *J* = 7.6 Hz, 1H, ArH), 7.16 (d, *J* = 7.2 Hz, 1H, ArH), 7.12 (s, 1H, ArH), 7.05 (d, *J* = 8.0 Hz, 1H, ArH), 3.77 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ, ppm) 162.9, 162.0, 159.6, 157.6, 139.6, 134.2, 134.0, 132.1, 131.6, 130.3, 129.1, 128.0, 127.8, 124.0, 120.5, 119.3, 118.1, 115.5, 114.8, 94.2, 32.3; HRMS (ESI) *m/z* calc. for C₂₃H₁₃NNaO₃, 374.0793 [M+Na]⁺; found 374.0779.

2-Oxo-(thiophen-2-yl)-2,5-dihydrobenzo[5,6]indeno[1,2-b]pyran-3- carbonitrile (3r)

Yellow solid; mp 243-244 °C; IR (KBr, v, cm⁻¹) 3012, 2220, 1768, 1621, 1497, 1354, 1187, 885; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 8.39 (s, 1H, ArH), 8.27 (s, 1H, ArH), 8.13 (d, *J* = 9.8 Hz, 3H, ArH), 8.01 (d, *J* = 8.4 Hz, 1H, ArH), 7.66 – 7.54 (m, 3H, ArH), 7.46 (s, 1H, ArH), 4.10 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 163.6, 162.9, 159.8, 139.3, 134.1, 133.3, 132.2, 131.5, 129.8, 129.1, 128.8, 128.8, 128.0, 127.0, 126.5, 120.6, 118.0, 115.2, 105.7, 91.0, 31.6; HRMS (ESI) *m*/*z* calc. for C₂₁H₁₂NO₂S 342.0583 [M+H]⁺; found 342.0589.

2-Oxo-3,4-dichlorophenyl-2,5-dihydrobenzo[5,6]indeno[1,2-b]pyran-3- carbonitrile (3s)

Yellow solid; mp 295-297 °C; IR (KBr, v, cm⁻¹) 3051, 2220, 1768, 1621, 1497, 1354, 1187, 885; ¹H NMR (400 MHz, DMSO-*d*₆; δ , ppm) 8.48 (s, 1H, ArH), 8.15 (t, *J* = 8.0 Hz, 3H, ArH), 8.03 (d, *J* = 7.2 Hz, 1H, ArH), 7.97 (d, *J* = 8.4 Hz, 1H, ArH), 7.80 (d, *J* = 9.2 Hz, 1H, ArH), 7.66 – 7.60 (m, 2H, ArH), 3.90 (s, 2H, CH₂); ¹³C NMR (100 MHz, DMSO-*d*₆; δ , ppm) 163.3, 159.4, 159.2, 139.6, 134.2, 134.1, 133.4, 132.1, 132.0, 131.4, 131.4, 130.1, 129.2, 128.6, 128.0, 128.0, 126.5, 124.1, 120.8, 119.2, 115.2, 95.0, 31.9; HRMS (ESI) *m/z* calc. for C₂₃H₁₂Cl₂NO₂, 404.0240 [M+H]⁺; found 404.0249.

Copies of ¹H NMR and ¹³C NMR of Compounds 3

¹³C NMR Spectrum of Compound 3a

¹³C NMR Spectrum of Compound 3b

¹³C NMR Spectrum of Compound 3c

3.643.62

100 90 f1 (ppm)

¹³C NMR Spectrum of Compound 3d

¹³C NMR Spectrum of Compound 3e

¹³C NMR Spectrum of Compound 3g

¹³C NMR Spectrum of Compound 3i

¹³C NMR Spectrum of Compound 3j

¹³C NMR Spectrum of Compound 3k

¹³C NMR Spectrum of Compound 31

¹³C NMR Spectrum of Compound 3n

¹³C NMR Spectrum of Compound 30

¹³C NMR Spectrum of Compound 3p

¹³C NMR Spectrum of Compound 3q

