Facile Synthesis of Hollow Carbon Microspheres Embedded with Molybdenum Carbide Nanoparticles as an Efficient Electrocatalyst for Hydrogen Generation

Cuncai Lv,^{a,b} Jie Wang,^b Qingli Huang,^c Qianpeng Yang,^b Zhipeng Huang,^{*b}Chi Zhang^{*b}

^a School of Material Science and Engineering, Jiangsu University, Zhenjiang, 212013,

China.

^b Functional Molecular Materials Research Centre, Scientific Research Academy, and

China-Australia Joint Research Center for Functional Materials, Jiangsu University,

Zhenjiang, 212013, China.

^c Testing Center, Yangzhou University, Yangzhou, 225009, China

*Corresponding author. Zhipeng Huang, Chi Zhang

E-mail: <u>zphuang@ujs.edu.cn</u>, <u>chizhang@ujs.edu.cn</u>

Electronic Supplementary Information

Figure S1. TGA curve of $Mo_2C/HCMs$ in O_2 atmosphere with heating rate of 10 °C min⁻¹.

Computation 1.

At 700 °C, all Mo₂C nanoparticles were oxidized to MoO₃ during the TGA measurement in oxygen atmosphere, and all carbon was removed. The weight percent of Mo₂C in Mo₂C/HCMs is computed according to the follow equation:

$$\frac{2 * w_{Mo2C}}{M_{Mo2C}} = \frac{w_{remain}}{M_{Mo03}}$$

Where ${}^{W_{Mo2C}}$ is the weight percent of Mo₂C, ${}^{M_{Mo2C}}$ is the molecular weight of Mo₂C, ${}^{W_{remain}}$ is the weight of MoO₃ suggested by the TGA curve, ${}^{M_{MoO3}}$ is the molecular weight of MoO₃. According to the TGA curve, ${}^{W_{remain}}$ is 79.2%, and then ${}^{W_{Mo2C}}$ is computed to be 56.1%.

Figure S2. (a) A typical low magnification SEM image of the $Mo_2C/HCMs$. (b) Diameter distribution of hollow carbon microspheres (HCMs) in the $Mo_2C/HCMs$.

Catalyst	Substrate	Mass density (mg cm ⁻²)	η ₁₀ (mV)	$\begin{array}{c} \eta_{20} \\ (mV) \end{array}$	Tafel slope (mV/dec)	Electrolyte
Mo ₂ C nanoparticles supported on Vulcan carbon black ¹	GCE	0.6	180	210	82	0.5 M H ₂ SO ₄
Commercial Mo ₂ C particles ²	carbon- paste electrodes	1.4	210	225	56	0.5 M H ₂ SO ₄
Mo ₂ C/CNT Mo ₂ C/XC-72R ³	carbon paper	2	$140(\eta_8)$ 200(η_8)		55.2 59.4	0.1 M HClO4
Mo ₂ C nanowires Mo ₂ C nanosheets ⁴	GCE	0.357	200 225	220 260	55.8 64.5	0.5 M H ₂ SO ₄
Mo ₁ Soy-RGO ⁵	carbon paper	0.47	177		66.4	0.1 M HClO4
3D hierarchical porous Mo ₂ C framework ⁶	GCE	0.28	97	125	60	0.5 M H ₂ SO ₄
Mesoporous m Mo ₂ C nano-octahedrons ⁷	glassy carbon disk electrode	0.8	142	160	53	0.5 M H ₂ SO ₄
Mo ₂ C-WC Composite Nanowires ⁸	GCE	1.28	130	150	52	0.5 M H ₂ SO ₄
Mo ₂ C/HCMs	GCE	0.285	179 265	203 346	83.9 143.4	0.5 M H ₂ SO ₄ 1 M KOH

 Table S1. Key performance of representative Mo₂C nanostructures.

Electrochemical surface area.

Electrochemical capacitance was measured to evaluate the effective surface area of various catalysts. ^{9, 10} Cyclic voltammetry (CV) experiments were performed at various scan rates (60, 80, 100, 120, 140, 160 and 180 mV s⁻¹) in 0.1-0.2 V vs. RHE at pH 7. The cyclic voltammograms of the Mo₂C/HCMs are plotted in Figures S3a and that of the Mo₂C/XC-72R in Figure S3b. The capacitance current density ($\Delta J=J_a-J_c$ at 0.15 V vs. RHE) was plotted against the scan rate and the specific capacitance is estimated by plotting the ΔJ , being 17.2 mF cm⁻² for the Mo₂C/HCMs and 1.4 mF cm⁻² for the Mo₂C/XC-72R (Figure 4b). As the specific capacitance is proportional to the surface area and the conductivity of the materials, a much larger specific capacitance of the Mo₂C/HCMs than that of the Mo₂C/XC-72R, indicates the high exposure of effective active sites for the Mo₂C/HCMs, which is responsible for the excellent HER activity.

Figure S3. (a,b) Cyclic voltammetry curves of Mo₂C/HCMs and Mo₂C/XC-72R in the region of 0.1-0.2 V vs. RHE, respectively. (c) The differences in current density variation $(\Delta J=J_a-J_c)$ at an overpotential of 0.15 V plotted against scan rate fitted to a linear regression enables the estimation of the specific capacitance.

Figure S4. Polarization curves and corresponding XRD patterns of Mo₂C/PCMs-750, Mo₂C/PCMs-850 and Mo₂C/PCMs-950.

Reference

- 1. S. Tuomi, R. Guil-Lopez and T. Kallio, J. Catal., 2016, 334, 102-109.
- 2. H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 51, 12703-12706.
- W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu and R. R. Adzic, *Energy Environ. Sci.*, 2013, 6, 943-951.
- 4. C. Ge, P. Jiang, W. Cui, Z. Pu, Z. Xing, A. M. Asiri, A. Y. Obaid, X. Sun and J. Tian, *Electrochim. Acta*, 2014, 134, 182-186.
- 5. W. Chen, S. Iyer, S. Iyer, K. Sasaki, C. Wang, Y. Zhu, Muckerman, J. T and E. Fujita, *Energy Environ. Sci.*, 2013, 6, 1818-1826.
- H. Ang, H. Wang, B. Li, Y. Zong, X. Wang and Q. Yan, *Small*, 2016, 12, 2859-2865.
- 7. H. Wu, B. Xia, L. Yu, X. Yu and X. Lou, *Nature Commun.*, 2015, 6, 6512.
- P. Xiao, X. Ge, H. Wang, Z. Liu, A. Fisher and X. Wang, *Adv. Funct. Mater.*, 2015, 25, 1520-1526.
- M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, J. Am. Chem. Soc., 2013, 135, 10274-10277.
- 10. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, *J. Am. Chem. Soc.*, 2013, 135, 17881-17888.