Electronic Supplementary Material

Fabricating of functionalized 3D graphene with controllable micro/meso-

pores as a superior electrocatalyst for enhanced oxygen reduction in both

acidic and alkaline solutions

Yue Guan, Zhiyu Dou, Yan Yang, Juanhong Xue, Zhen Zhu, Lili Cui* Key Laboratory of Applied Chemistryand Nanotechnology at Universities of Jilin Province, Department of Chemistry and Chemical Engineering, Changchun University of Science and Technology, Changchun 130022, China

Fig. S1 (a) High-resolution N 1s spectrum of the 3D Fe_5C_2/N -PG-1.0-700. (b) High-resolution N 1s spectrum of the 3D Fe_5C_2/N -PG-1.0-900.

Corresponding author:

*E-mail:cuilil1127@gmail.com (Lili Cui)

samples	С	Ν	0	Fe	N at%			
	1s %	1s %	1s %	2р %	Pyridinic N	Pyrrolic N	Graphitic N	Oxidized N
3D Fe ₅ C ₂ /N- PG-1.0-700	90.75	5.39	3.57	0.29	2.21	1.11	1.09	0.97
3D Fe ₅ C ₂ /N- PG-1.0-800	94.16	2.82	2.78	0.24	0.96	0.66	0.78	0.42
3D Fe5C2/N- PG-1.0-900	95.42	1.72	2.73	0.13	0.61	0.32	0.48	0.31

 Table S1 Surface element contents obtained from the XPS analysis.

Materials	E _{onest} (V)	E _{1/2} (V)	$J_{\rm L}$ (mA cm ⁻²)	Electrolyte solution	Reference electrode	Rreference
3D Fe ₅ C ₂ /N-PG-1.0-800	0.88	0.71	6.62	$0.5 \ M \ H_2 SO_4$	RHE	In this work
Fe-N-CC	0.80	0.52	3.50	$0.5 \mathrm{~M~H_2SO_4}$	RHE	1
PANI–Fe	0.85		4.50	$0.5 \ M \ H_2 SO_4$	RHE	2
Co-N-GA	0.88	0.73	5.90	$0.5 \ M \ H_2 SO_4$	RHE	3
ZIF-67-900	0.85	0.71	3.90	$0.5 \mathrm{~M~H_2SO_4}$	RHE	4
Fe-N-HCMS	0.80		6.30	$0.5 \ M \ H_2 SO_4$	RHE	5

 Table S2 Electrochemical performance of different electrocatalysts for ORR.

Fig. S2 The K-L plots and the corresponding kinetic current density of 3D Fe₅C₂/N-RGO-800 (a), 3D Fe₅C₂/N-PG-0.5-800 (b), 3D Fe₅C₂/N-PG-1.0-800 (c), 3D Fe₅C₂/N-PG-2.0-800 (d) and Pt/C (e) sample at 0.6 V vs. RHE in O₂-saturated 0.5 M H₂SO₄ solution at 1600 rpm, respectively. (f) Mass activity of 3D Fe₅C₂/N-RGO-800, 3D Fe₅C₂/N-PG-h-800 and Pt/C samples at 0.6 V vs. RHE in O₂-saturated 0.5 M H₂SO₄ solution at 1600 rpm. The catalyst loading in all cases is 280 μ g cm⁻².

Fig. S3 The K-L plots and the corresponding kinetic current density of 3D Fe₅C₂/N-RGO-800 (a), 3D Fe₅C₂/N-PG-0.5-800 (b), 3D Fe₅C₂/N-PG-1.0-800 (c), 3D Fe₅C₂/N-PG-2.0-800 (d) and Pt/C (e) at 0.8 V vs. RHE in O₂-saturated 0.1 M KOH solution at 1600 rpm, respectively. (f) Mass activity of 3D Fe₅C₂/N-RGO-800, 3D Fe₅C₂/N-PG-h-800 and Pt/C samples at 0.8 V vs. RHE in O₂-saturated 0.1 M KOH solution at 1600 rpm. The catalyst loading in all cases is 280 μ g cm⁻².

References

- 1 G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla and M. M. Titirici, ACS Nano, 2016, DOI:10.1021/acsnano.6b0 1247.
- 2 H. W. Liang, W. Wei, Z. S. Wu, X. Feng and K. Müllen, J. Am. Chem. Soc. 2013, 135, 16002-16005.
- 3 X. G. Fu, J. Y. Choi, P. Y. Zamani, G. P. Jiang, M. A. Hoque, F. M. Hassan and Z. W.

Chen, ACS Appl. Mater. Interfaces, 2016, 8, 6488-6495.

- 4 X. J. Wang, J. W. Zhou, H. Fu, W. Li, X. X. Fan, G. B. Xin, J. Zheng and X. G. Li, J. Mater. Chem. A, 2014, 2, 14064-14070.
- 5 M. Zhou, C. Yang and K. -Y. Chan, Adv Energy Mater, 2014, 4, n/a-n/a.