Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Mechanical reinforcement of PBO fibers by dicarboxylic acid functionalized carbon nanotubes through *in situ* copolymerization

Yanwei Li,*^a Qian Duan, ^a Yanhui Li,^a Zhen Hu,^b Jun Li,^b Yuanjun Song,^b and Yudong Huang*^b

 ^a School of Materials Science and Engineering, Changchun University of Science and Technology,130022, Changchun, China. E-mail: liyanwei@cust.edu.cn
 ^b School of Chemical Engineering and Technology, Harbin Institute of Technology, 150001, Harbin, China. E-mail: ydhuang.hit1@aliyun.com

[η] (dL·g ⁻¹)	<i>M</i> _ν (g·mol⁻¹)
8.9	1.48× 104
12.0	1.66×10^{4}
12.5	1.69× 10 ⁴
13.8	1.79×10^{4}
	8.9 12.0 12.5

Table S1 Research on the viscosity of PBO and CNTs I-III & PBO copolymer fibers.

$$E_{p} = E_{m} \left[\frac{1 + 2(l_{NT} / d_{NT}) \eta_{P} V_{NT}}{1 - \eta_{P} V_{NT}} \right]$$
(1)

$$E_{c} = E_{m} \left[\frac{3}{8} \frac{1 + 2(l_{NT}/d_{NT})\eta_{L}V_{NT}}{1 - \eta_{L}V_{NT}} + \frac{5}{8} \frac{1 + 2\eta_{U}V_{NT}}{1 - 2\eta_{U}V_{NT}} \right]$$
(2)

where in (1)
$$\eta_P = \frac{(E_{NT}/E_m) - 1}{(E_{NT}/E_m) + 2(l_{NT}/d_{NT})}$$

in (2)
$$\eta_L = \frac{(E_{NT}/E_m) - 1}{(E_{NT}/E_m) + 2(l_{NT}/d_{NT})}$$
 and $\eta_U = \frac{(E_{NT}/E_m) - 1}{(E_{NT}/E_m) + 2}$

In the above equations, Ep is the tensile modulus of the composites with CNTs aligned along axial direction of the fiber, E_c is the tensile modulus of the composite fiber with randomly distributed CNTs, E_m is the tensile modulus of PBO matrix, E_{NT} is tensile modulus (1 TPa) of CNTs bundle, I_{NT} and d_{NT} are average length (50 nm) and diameter (5 nm) of CNTs bundles, V_{NT} is the volume fraction of CNTs. The density for CNTs, PBO for calculation V_{NT} is 1.60, 1.54 g·cm⁻³, respectively.

.

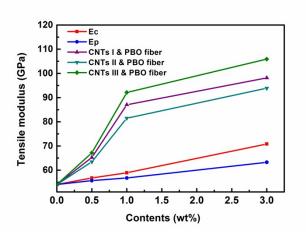


Fig.S1 Tensile modulus of CNTs I-III & PBO copolymer fibers compared with the prediction values