Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

RSC Adv

Supplementary Information

A π -extended luminogen with colorimetric and off/on fluorescent multi-channel detection for Cu²⁺ in high selectivity and sensitivity via nonarylamine-based organic mixed-valence

Ruizhi Tang,^a Xinyang Wang,^a Wanzheng Zhang,^a Xiaodong Zhuang,^{*,a} Shuai Bi,^a Wenbei Zhang,^a Yiyong Mai,^a Fan Zhang,^{*,a}

^a School of Chemistry and Chemical engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

E-mail: fan-zhang@sjtu.edu.cn; zhuang@sjtu.edu.cn

Table of Contents

1.	Optical Spectra	S2
2.	¹ H and ¹³ C NMR Spectra for New Compounds	S5
3.	References	S 8

1 Optical Spectra

Figure. S1 UV-vis spectra of ITP-TPE (2×10^{-5} M) in CH₃CN solution.

Figure. S2 UV-vis spectra of ITP-TPE (2×10^{-5} M) in CH₃CN solution at different irradiation time.

Figure.S3 Fluorescence spectra of ITP-TPE (a) in CH₃CN–water mixtures (1.0×10^{-5} M, with varied volumetric fractions of water; (b) the fluorescence intensity change spectra of ITP-TPE at different content of water.

Figure.S4 Back titration fluorescence spectra of ITP-TPE $(2 \times 10^{-5} \text{ M})$ in CH₃CN–water (9:1) solution upon addition of 1 equiv. of various metal ions.

Detection Limit Calculation for This Method ^{S1}:

Through fluorometric titrations, the detection limit for Cu^{2+} was determined. According to the definition, detection limit = $3S_{bi}/k$, where S_{bi} is standard deviation of 6 blank measurements and k is the slope obtained from the calibration curve. In this method, the standard deviation S_{bi} of 671 and the slope from the graph k of 48478 are calculated. Therefore, the detection limit = 4×10^{-7} M (R = 0.98) can be obtained.

Figure. **S5** Linear relationship between fluorescence intensity of ITP-TPE (2×10^{-5} M in CH₃CN) at 402 nm and the concentration of Cu²⁺ ($0.1 - 2 \times 10^{-5}$ M) in CH₃CN.

Figure. S6 Cyclic voltammograms of Cu $(CF_3SO_3)_2$ measured in CH₃CN (0.1 mol/L n-Bu₄NPF₆) at a scan rate of 100 mV/s.

2 ¹H and ¹³C NMR Spectra for New Compounds

Figure. S8. ¹³C NMR spectra of compound 2 (100MHz, CDCl₃, ppm)

Figure. S10¹³C NMR spectra of compound ITP-TPE (100MHz, CDCl₃, ppm)

Figure S11. NMRS of 2

Mass Spectrum SmartFormula Report

Figure S12. NMRS of ITP-TPE

3 References

S1 (a) V. Thomsen, D. Schatzlein, and D. Mercuro, *Spectroscopy*, 2003, **18**, 112; (b) F. Zheng, F. Zeng, C. Yu, X. Hou and S. Wu, *Chem. Eur.J.*, 2013, **19**, 936; (c) A. Roy, D. Kand, T. Saha, P. Talukdar, *Chem. Commun.*, 2014, **50**, 5510.