Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information (SI) Cadmium (II) supramolecular complexes constructed from phenylbenzoxazole-based ligand: self-assembly, structural features and nonlinear optical properties

Na Zhang^a, Dan Liu^a, Huihui Zhang^a, Jianhua Yu^a, Zhichao Wu^a, Qiyong Zhu^{b, *}, Hongping Zhou^{a, *}

^aCollege of Chemistry and Chemical Engineering, Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, 230601, Hefei, P.R. China ^bDepartment of Chemistry, Huainan Normal College, Huainan, 232001 P.R. China

Corresponding author. Fax: +86-551-63861279; Tel: +86-551-63861279 E-mail: <u>zhpzhp@263.net</u> **Table S1**: Selected bond lengths (Å) and angles (°) for complexes 1-4

Table S2: Third-order NLO data for complexes 1 and 3

$C_{19}H_{15}Cd_2Cl_2N_3O(1)$						
Cd(1)-N(3)	2.296(2)	N(3)-Cd(1)-Cl(1) ^{#1}	159.40(6)	Cl(2)-Cd(1)-Cl(2) ^{#2}	85.90(3)	
Cd(1)-Cl(1) ^{#1}	2.5260(9)	N(3)-Cd(1)-N(2)	71.12(8)	N(3)-Cd(1)-Cl(1)	90.42(6)	
Cd(1)-N(2)	2.566(2)	$Cl(1)^{\#1}-Cd(1)-N(2)$	88.44(6)	$Cl(1)^{\#1}-Cd(1)-Cl(1)$	82.26(3)	
Cd(1)-Cl(2)	2.5866(9)	N(3)-Cd(1)-Cl(2)	99.47(6)	N(2)-Cd(1)-Cl(1)	77.10(5)	
Cd(1)-Cl(2)#2	2.6519(8)	$Cl(1)^{\#1}-Cd(1)-Cl(2)$	100.10(3)	Cl(2)-Cd(1)-Cl(1)	92.83(3)	
Cd(1)-Cl(1)	2.7622(9)	N(2)-Cd(1)-Cl(2)	165.89(5)	$Cl(2)^{\#2}-Cd(1)-Cl(1)$	177.47(2)	
$Cd(1)^{\#1}-Cl(1)$	2.5260(9)	N(3)-Cd(1)-Cl(2) ^{#2}	91.95(6)	$Cd(1)^{\#1}-Cl(1)-Cd(1)$	97.74(3)	
$Cd(1)^{\#2}$ -Cl(2)	2.6519(8)	Cl(1) ^{#1} -Cd(1)-Cl(2) ^{#2}	95.81(3)	Cd(1)-Cl(2)-Cd(1) ^{#2}	94.10(3)	
		N(2)-Cd(1)-Cl(2) ^{#2}	104.53(5)			
$C_{19}H_{15}Cd_2Br_2N_3O(2)$						
Cd(1) -Br(1)	2.7080(5)	Cd(1)-Br(1)-Cd(1) ^{#1}	92.422(14)	Br(2)-Cd(1)-Br(1) ^{#1}	98.389(15)	
$Cd(1)^{#1}-Br(1)$	2.8255(5)	N(3)-Cd(1)-N(2)	71.22(9)	Br(1)-Cd(1)-Br(1) ^{#1}	87.578(14)	
Cd(1)-N(3)	2.292(2)	N(3)-Cd(1)-Br(2)	160.03(6)	N(3)-Cd(1)-Br(2) ^{#2}	87.68(6)	
Cd(1)-N(2)	2.567(3)	N(2)-Cd(1)-Br(2)	88.90(6)	N(2)-Cd(1)-Br(2) ^{#2}	79.44(6)	
Cd(1)-Br(2)	2.6636(5)	N(3)-Cd(1)-Br(1)	100.08(6)	$Br(2)-Cd(1)-Br(2)^{\#2}$	86.796(15)	
Cd(1)-Br(1) ^{#1}	2.8255(5)	N(2)-Cd(1)-Br(1)	168.85(6)	Br(1)-Cd(1)-Br(2)#2	93.509(14)	
Cd(1)-Br(2) ^{#2}	2.9010(5)	Br(2)-Cd(1)-Br(1)	99.400(13)	$Br(1)^{\#1}-Cd(1)-Br(2)^{\#2}$	174.464(11)	
$Cd(1)^{\#2}-Br(2)$	2.9010(5)	N(3)-Cd(1)-Br(1) ^{#1}	86.78(6)	Cd(1)-Br(2)-Cd(1) ^{#2}	93.203(15)	
		N(3)-Cd(1)-Br(1) ^{#1}	98.64(6)			

Table S1: Selected bond lengths (Å) and angles (°) for complexes 1-4

Supporting Information page 1/9

$C_{40}H_{38}Cd_2I_4N_6$ (3)							
I(1)-Cd(1)	2.7911(12)	Cd(1)-I(1)-Cd(1) ^{#1}	90.73(2)	I(2)-Cd(1)-I(1)	124.42(2)		
$I(1)-Cd(1)^{\#1}$	3.0804(10)	N(3)-Cd(1)-N(2)	70.20(10)	N(3)-Cd(1)-I(1) ^{#1}	90.59(8)		
Cd(1)-N(3)	2.316(3)	N(3)-Cd(1)-I(2)	123.15(8)	N(2)-Cd(1)-I(1) ^{#1}	159.86(7)		
Cd(1)-N(2)	2.532(3)	N(2)-Cd(1)-I(2)	96.91(8)	I(2)-Cd(1)-I(1) ^{#1}	98.80(4)		
Cd(1)-I(2)	2.7139(12)	N(3)-Cd(1)-I(1)	111.54(9)	I(1)-Cd(1)-I(1) ^{#1}	89.27(2)		
Cd(1)-I(1) ^{#1}	3.0804(10)	N(2)-Cd(1)-I(1)	92.20(7)				
$C_{21}H_{15}CdN_5OS_2(4)$							
Cd(1)-N(4)	2.300(2)	S(1)-Cd(1) ^{#2}	2.6434(8)	N(5)-Cd(1)-S(1) ^{#1}	96.34(6)		
Cd(1)-N(3)	2.323(2)	N(4)-Cd(1)-N(3)	93.88(9)	N(2)-Cd(1)-S(1) ^{#1}	169.64(5)		
Cd(1)-N(5)	2.357(3)	N(4)-Cd(1)-N(5)	171.47(8)	N(4)-Cd(1)-S(2) ^{#2}	91.20(8)		
Cd(1)-N(2)	2.537(2)	N(3)-Cd(1)-N(5)	90.14(9)	N(3)-Cd(1)-S(2) ^{#2}	158.56(5)		
Cd(1)-S(1) ^{#1}	2.6434(8)	N(4)-Cd(1)-N(2)	94.15(7)	N(5)-Cd(1)-S(2)#4	82.40(8)		
Cd(1)-S(2)#2	2.6899(13)	N(3)-Cd(1)-N(2)	70.04(7)	N(2)-Cd(1)-S(2) ^{#2}	88.83(5)		
S(2)-C(21)	1.647(3)	N(5)-Cd(1)-N(2)	80.14(7)	S(1)#1-Cd(1)-S(2) ^{#2}	100.42(3)		
S(2)-Cd(1) ^{#1}	2.6899(13)	N(4)-Cd(1)-S(1) ^{#1}	90.35(6)	C(21)-S(2)-Cd(1) ^{#1}	91.11(9)		
S(1)-C(20)	1.646(3)	N(3)-Cd(1)-S(1) ^{#1}	100.37(5)	C(20)-S(1)-Cd(1) ^{#2}	95.61(8)		
^a Symmetry transformations used to generate equivalent atoms: For1: #1 -x, -y+1, -z, #2: -x+1, -y+1, -z; #1							
For2:-x+1,-y+2,-z, #2 -x,-y+2,-z;For3: #1 -x+1,-y+2,-z+1, For4 #1: x, -y+1/2, z+1/2, #2: x, -y+1/2, z-1/2							

Table S2: Third-order NLO data for complexes 1 and 3

	1	
compound	Complex 1	Complex 3
β (cm GW ⁻¹)	0.16	0.13
σ (GW)	6415.55	5593.66
$\gamma (m^2 W^{-1})$	2.36×10 ⁻¹⁶	3.03×10 ⁻¹⁶
$\chi^{(3)}$ (esu)	5.93×10 ⁻¹⁴	5.72×10 ⁻¹⁴