Supporting information for: Facile high-yield synthesis of unsymmetric end-off compartmental double Schiff-base ligands: easy access to mononuclear precursor and unsymmetric dinuclear complexes

Markus Schmidt, Helmar Görls, and Winfried Plass*

Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany.

> E-mail: sekr.plass@uni-jena.de Phone: +49 3641 948130. Fax: +49 3641 948132

	$[Ni(tsc\text{-}difo)PPh_3] \cdot 2MeOH$	$[\mathrm{Zn}_2(\mathrm{tsc\text{-hydra}})(\mathrm{OAc})_2]{\cdot}\mathrm{MeCN}{\cdot}\mathrm{H}_2\mathrm{O}$
formula	C ₃₀ H ₃₂ N ₃ NiO ₄ PS	$C_{30}H_{36}N_8O_6SZn_2$
formula weight $(g \mod^{-1})$	620.33	767.47
color	brown	yellow
crystal size (mm)	$0.045 \times 0.034 \times 0.032$	$0.060 \times 0.060 \times 0.040$
crystal system	monoclinic	monoclinic
space group	$P2_1/n$	$P2_{1}/n$
$a \ (pm)$	1483.10(6)	1347.46(8)
b (pm)	767.72(3)	1502.26(11)
$c \ (\mathrm{pm})$	2582.78(9)	1667.45(12)
α (°)	90	90
β (°)	93.346(1)	93.667(4)
γ (°)	90	90
$V \ (10^6 \ { m pm}^3)$	2935.75(19)	3368.4(4)
Z	4	4
T (K)	133(2)	133(2)
$ ho_{ m calc} \; ({ m gcm^{-3}})$	1.403	1.513
F(000)	1296	1584
$\mu(Mo K_{\alpha}) \ (mm^{-1})$	0.826	1.540
Θ range of data collection (°)	2.67 - 27.45	2.42 - 27.49
measured reflections	16312	15345
unique reflections $(R_{\rm int})$	6439(0.0333)	$6769 \ (0.0447)$
no. of parameters	450	457
goodness-of-fit on F^2	1.124	1.177
$R1 \ (I > 2\sigma(I))$	0.0478	0.0565
wR2 (all data)	0.1226	0.1176

Table S1: Crystallographic data and structure refinement parameters for [Ni(tsc-difo)PPh₃]·2MeOH and [Zn₂(tsc-hydra)(OAc)₂]·MeCN·H₂O

Table S2: Selected $^{13}\mathrm{C}$ NMR data for mono and double Schiff bases ($\delta/\mathrm{ppm})$

Ligand	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
H_2 sc-difo	156.3	135.5	122.2	134.1	128.8	132.3	121.9	156.4	19.7	194.6
H_2 tsc-difo	177.9	137.1	122.1	134.2	129.1	134.3	121.8	156.7	19.7	195.7
H_2 sc-hydra	156.8	134.6	122.3	128.9	126.2	132.7	118.2	158.8	20.0	166.5
H_2 tsc-hydra	177.7	137.8	121.9	129.7	125.9	133.7	118.0	160.5	19.9	166.5
$H_2sc-ampy$	156.8	134.2	121.0	129.0	127.0	132.9	118.5	157.6	19.9	167.5
H_2 tsc-ampy	177.8	137.3	121.5	129.4	126.9	133.9	118.5	158.6	19.9	167.5
$H_3sc-amph$	156.8	134.4	122.1	129.3	127.1	133.4	119.3	157.6	20.0	161.4
H_3 tsc-amph	177.8	137.4	121.6	129.8	127.1	134.3	119.3	158.6	20.0	161.3

Table S3: Bond angles at the nickel (II) ion in the crystal structure of $[\rm Ni(tsc-difo)PPh_3]\cdot 2MeOH (in deg)$

S-Ni-P	91.46(3)
S-Ni-O1	174.29(7)
P-Ni-O1	86.39(6)
O1–Ni–N3	95.13(10)
S–Ni–N3	87.33(8)
P-Ni-N3	176.35(8)

Table S4: Bond angles at the zinc(II) ions in the crystal structure of $[\rm Zn_2(tsc-hydra)(OAc)_2]\cdot MeCN\cdot H_2O$ (in deg)

S-Zn1-O1	150.00(9)	O1–Zn2–O4	75.22(11)
S–Zn1–O2	115.13(10)	O1–Zn2–N4	85.40(12)
S-Zn1-O4	100.29(9)	O1–Zn2–N5	161.90(12)
S-Zn1-N3	82.40(10)	O1–Zn2–N6	113.57(13)
O1–Zn1–O2	94.40(13)	O1–Zn2–N7	96.30(13)
O1–Zn1–O4	76.00(11)	O4–Zn2–N4	155.62(13)
O1–Zn1–N3	84.53(12)	O4–Zn2–N5	121.10(12)
O2–Zn1–O4	104.21(13)	O4–Zn2–N6	87.48(13)
O2–Zn1–N3	105.96(13)	O4–Zn2–N7	93.62(13)
O4–Zn1–N3	145.09(13)	N4–Zn2–N5	80.55(13)
		N4–Zn2–N6	86.87(15)
		N4–Zn2–N7	103.22(15)
		N5–Zn2–N6	77.15(14)
		N6–Zn2–N7	76.06(14)
		N6–Zn2–N7	149.27(14)

Figure S1: Experimental setup for the synthesis of the proligands H_2 sc-difo and H_2 tsc-difo in gram scale and high purity.

Figure S2: NMR spectra of H_2 tsc-difo in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water, acetonitrile and DMSO. (Bottom) ¹³C{¹H} NMR.

Figure S3: FT-IR spectra of H_2 tsc-difo: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3447, 3278, 3150, 3124, 3034, 2981, 2857, 1644, 1614, 1584, 1540, 1480, 1448, 1370, 1319, 1277, 1251, 1223, 1159, 1112, 1058, 971, 952, 872, 827, 798, 767, 753, 714, 650, 634, 577, 560, 521, 478, 444, 415, 404.

Figure S4: NMR spectra of H_2 tsc-difo in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water, dichloromethane and DMSO. (Bottom) ¹³C{¹H} NMR; marked peaks correspond diethyl ether.

Figure S5: FT-IR spectra of H_2 sc-difo: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3469, 3288, 3158, 3064, 2998, 2922, 2865, 1714, 1675, 1652, 1602, 1582, 1517, 1463, 1428, 1355, 1321, 1261, 1222, 1170, 1145, 1039, 968, 941, 923, 875, 858, 804, 772, 751, 724, 657, 573, 518, 445, 401.

Figure S6: NMR spectra of H₂tsc-hydra in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water and DMSO. (Bottom) ${}^{13}C{}^{1}H$ NMR.

Figure S7: FT-IR spectra of H₂tsc-hydra: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3117, 2977, 2947, 2922, 2895, 2810, 1630, 1591, 1570, 1531, 1456, 1435, 1364, 1353, 1305, 1275, 1247, 1165, 1145, 1108, 1035, 1010, 968, 948, 898, 879, 843, 801, 753, 653, 637, 611, 566, 529, 513, 477, 458, 420.

Figure S8: NMR spectra of H₂sc-hydra in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water, methanol and DMSO. (Bottom) ¹³C{¹H} NMR; marked peaks are assigned to diethyl ether.

Figure S9: FT-IR spectra of H₂sc-hydra: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3480, 3124, 3064, 2945, 2918, 2833, 1680, 1634, 1591, 1474, 1460, 1428, 1383, 1353, 1312, 1282, 1252, 1229, 1147, 1122, 1065, 1046, 1005, 984, 948, 898, 872, 849, 808, 756, 730, 650, 625, 589, 570, 538, 470, 412.

Figure S10: NMR spectra of H₂tsc-ampy in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water, DMSO and diethyl ether. (Bottom) ¹³C{¹H} NMR; marked peaks correspond to diethyl ether.

Figure S11: FT-IR spectra of H₂tsc-ampy: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3374, 3125, 2992, 1640, 1612, 1588, 1544, 1522, 1499, 1471, 1422, 1368, 1347, 1295, 1248, 1227, 1211, 1154, 1108, 1065, 1042, 986, 960, 937, 873, 854, 826, 756, 669, 632, 599, 557, 515, 493, 470, 414.

Figure S12: NMR spectra of H₂sc-ampy in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water, methanol and DMSO. (Bottom) ¹³C{¹H} NMR.

Figure S13: FT-IR spectra of H_2 sc-ampy: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3465, 3286, 3154, 2918, 1688, 1635, 1587, 1521, 1465, 1426, 1350, 1310, 1282, 1261, 1141, 1103, 1040, 1007, 991, 948, 869, 780, 742, 722, 661, 635, 617, 582, 538, 508, 495, 467.

Figure S14: NMR spectra of H_3 tsc-amph in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water, methanol and DMSO. (Bottom) ¹³C{¹H} NMR.

Figure S15: FT-IR spectra of H_3 tsc-amph: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3411, 3294, 3177, 1589, 1541, 1490, 1457, 1363, 1320, 1238, 1213, 1159, 1106, 1065, 1035, 979, 951, 935, 874, 828, 750, 732, 625, 605, 582, 561, 538, 495, 473, 439, 424.

Figure S16: NMR spectra of H₃sc-amph in DMSO-d₆: (Top) ¹H NMR; marked peaks correspond to water, methanol and DMSO. (Bottom) ¹³C{¹H} NMR.

Figure S17: FT-IR spectra of H_3 sc-amph: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3470, 3146, 3047, 2700, 1683, 1620, 1579, 1533, 1500, 1465, 1434, 1355, 1282, 1231, 1157, 1111, 1035, 976, 956, 872, 821, 783, 750, 656, 556, 541, 493, 462, 414.

Figure S18: NMR spectra of $[Ni(tsc-difo)PPh_3]$ in CD_2Cl_2 : (Top) ¹H NMR; marked peak corresponds to methanol which is included in the crystal packing. (Bottom) ¹³C{¹H} NMR. For notation of the ligand atoms cf. Fig. S2.

Figure S19: UV/Vis spectrum of $[\rm Ni(tsc-difo)PPh_3]$ in dichloromethane.

Figure S20: FT-IR spectra of $[Ni(tsc-difo)PPh_3]$: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3503, 3438, 3375, 3324, 3182, 3047, 2916, 2858, 1649, 1603, 1545, 1526, 1480, 1454, 1434, 1413, 1396, 1381, 1362, 1335, 1309, 1287, 1229, 1181, 1145, 1099, 1072, 1026, 1014, 997, 966, 952, 920, 877, 843, 766, 754, 742, 693, 674, 616, 565, 531, 507, 488, 457, 428.

Figure S21: NMR spectra of $[Zn_2(tsc-hydra)(OAc)_2]$ in DMSO-d₆: (Top) ¹H NMR; marked peak correspond to DMSO, methanol, acetonitrile and water. (Bottom) ¹³C{¹H} NMR; marked peak corresponds to methanol. For notation of the ligand atoms cf. Fig. S10.

Figure S22: Mass spectrum in ESI positive mode of $[Zn_2(tsc-hydra)(OAc)_2]$ in acetonitrile.

Figure S23: FT-IR spectra of $[Zn_2(tsc-hydra)(OAc)_2]$: (Top) Overview range from 4000–400 cm⁻¹. (Bottom) Fingerprint region from 1800–400 cm⁻¹. List of the positions of vibrational bands (in cm⁻¹): 3309, 3180, 2921, 1649, 1598, 1550, 1466, 1438, 1378, 1319, 1296, 1276, 1232, 1193, 1152, 1104, 1079, 1051, 1019, 990, 971, 953, 937, 886, 820, 758, 728, 710, 676, 642, 614, 594, 561, 516, 477, 458, 415.

Figure S24: Comparison of the ¹H NMR spectra of H_2 tsc-difo before (lower line) and after purification by Soxhlet extraction with chloroform; both spectra were measured in DMSO-d₆; marked signals correspond to the symmetric byproduct.

Figure S25: NH/ π interactions in the crystal structure of [Ni(tsc-difo)PPh₃]·2MeOH: (Top) Interactions at one complex molecule. (Bottom) Resulting zig-zag chain like arrangement along the [010] direction. Pertinent distances and angles: N1··· centroid 326 pm, H··· centroid 242 pm, N1–H··· centroid 162°.

Figure S26: Representation of the mean planes for the thiosemicarbazone (N1, N2, C1) and the phenolate fragment (C4, C6, C8) in the crystal structure of $[Zn_2(tsc-hydra)(OAc)_2]$ ·MeCN·H₂O indicating the rotation about the C2–C3 bond.

Figure S27: (Top) Representation of the two orientations of the hydrogen bonded chains along the [100] direction in the crystal structure of $[Zn_2(tsc-hydra)(OAc)_2]$ ·MeCN·H₂O. (Bottom) Interaction of the acetonitrile molecules with chains of the same orientation. Pertinent distances: O1W···N1AN 298.4(9) and O3···C2AN 318.2(9) pm.

Figure S28: Representation of the π - π interaction in the crystal structure of $[Zn_2(tsc-hydra)(OAc)_2]$ ·MeCN·H₂O. Pertinent data: centroid··· centroid distance 383.5 pm, shortest C–C contact 346 pm, angle between π planes 19°.