Electronic Supplementary Information for

Enhanced Microwave Absorption Material of Ternary Nanocomposites Based on MnFe₂O₄@SiO₂, Polyaniline and Polyvinylidene Fluoride

Jia-Qiang Zhu, § Xiao-Juan Zhang, § Shan-Wen Wang, Guang-Sheng Wang* and Peng-Gang Yin*

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China. E-mail: wanggsh@buaa.edu.cn; pgyin@buaa.edu.cn

Fig. S1. The magnified TEM image (a) and high-resolution TEM image (b) of $MnFe_2O_4@SiO_2$ nanoparticles

Fig. S2. The EDX spectrum of $MnFe_2O_4@SiO_2$ nanoparticles

Fig. S3. The photograph of (a) MnFe₂O₄@SiO₂ nanoparticles and (b) MnFe₂O₄ nanoparticles disperse in DMF

Fig. S4. Frequency dependence on (a) dielectric loss and (b) magnetic loss of samples.