Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

Phosphoric acid-assisted synthesis of layered MoS₂/graphene hybrids

with electrolyte-dependent supercapacitive behaviors

Bingqiao Xie^a, Ying Chen^{a*}, Mengying Yu^a, Shanshan Zhang^a, Luhua Lu^{a*}, Zhu Shu^a, Yong Zhang^{b,c}

^a Engineering Research Center of Nano-Geomaterials of Ministry of Education, Department of Materials, China University of Geosciences, Wuhan 388 Lumo RD, Wuhan 430074, China ^bSchool of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China

^cKey Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei,230009, China

Figure S1. The additional SEM pictures of a) P-MG, b)P-MG(T), and c)TEM picture of MG(T).

Figure S2. a) XPS survey spectra of P-MG and P-MG(T), b) C1s spectra of P-MG; c) P 2p spectra of P-MG.

Figure S3. a)Calculated C_{sp} value for three samples from CV curves in acidic electrolyte; b)cycling performance of pure MoS₂.

Sample	XPS analysis(atom%)					C _{sp} (F g ⁻¹) at 2A g ⁻¹		
	С	0	Р	S	Мо	6M KOH	1M H ₂ SO ₄	
MoS ₂				67.5	32.5	36	42	
MG	40.3	14.8		30.1	14.8			
MG(T)	45.3	9.5		30.3	14.9	172	164	
P-MG	46	16.2	1.3	24.5	12.0			
P-MG(T)	50.9	12.1	1.1	24.1	11.8	258	351	

Table S1. XPS analysis results and electrochemical properties of the samples.

Electrode materials	Involved precursors (preparation method)	Capacitance value(F/g) Cycling retention		Electrolyte	Ref.
MoS ₂ -Gr	GO+Na ₂ MoO ₄ +L-cysteine (hydrothermal)	243(1A/g) 130(5A/g)	92.3% (1000 cycles 1A/g)	1M Na ₂ SO ₄	1
MoS ₂ /RGO	GO+(NH ₄) ₆ Mo ₇ O ₂₄ +NH ₂ CSNH ₂ (hydrothermal)	249(0.3A/g) ~173(5A/g)	93.6%(1000 cycles 2A/g)	1M H ₂ SO ₄	2
MoS ₂ /RGO	GO(DMF)+MoCl ₅ +butyl mercaptan (microwave)	205(80mV/s)	92%(1000 cycles CV data)	1M HClO ₄	3
MoS ₂ -GNs	graphite+MoS ₂ pellets (layer-by-layer)	255(2A/g)	93%(1000 cycles 1A/g)	1M Na ₂ SO ₄	4
MoS ₂ /NG(1.5)	GO+Na2MoO4+L-cysteine (hydrothermal)	245(0.25A/g) 196(5A/g)	91.3%(1000 cycles 2A/g)	6М КОН	5
MoS ₂ /Carbon aerogel	Carbon aerogel+Na ₂ MoO ₄ +L- cysteine (hydrothermal)	260(1A/g) 179.9(10A/g)	92.4%(1500 cycles 1A/g)	1M Na ₂ SO ₄	6
MoS ₂ /C composite	ammonium molybdate+ thiourea (hydrothermal)	201(0.2A/g)	89.4%(1000 cycles 0.2A/g)	1M Na ₂ SO ₄	7
NC-MoS ₂	Li _x MoS ₂ +dopamine hydrochloride (calcination)	158(0.5A/g)	89%(1000 cycles 1A/g)	1M Na ₂ SO ₄	8
3D MoS ₂ /CMG	MoS ₂ nanosheets+GO (hydrothermal)	268(0.5A/g)	93%(1000 cycles 1A/g)	1M Na ₂ SO ₄	9
MoS ₂ /G nanocomposite	Thioacetamide+ammonium heptamolybdate+GO (hydrothermal)	270(0.1A/g)	89.6%(1000 cycles 0.6A/g)	1M Na ₂ SO ₄	10
P-MG(T) Na ₂ MoO ₄ + <i>L</i> -cysteine +CTAB+H ₃ PO ₄ +GO (hydrothermal)		351(2A/g) 225(10A/g)	89.5% (1000 cycles 4A/g)	1M H ₂ SO ₄	this work

5	Table S2.	Electrochemical	performance	e of MoS ₂ /g	graphe	ne composite
_						

References

[1] K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.-B. Wang, T. Gan and L.-L. Wang, *Int. J. Hydrogen Energ.*, 2013, **38**, 14027-14034.

[2] K. Gopalakrishnan, K. Pramoda, U. Maitra, U. Mahima, M.A. Shah and C.N.R. Rao, *Nanomaterials and Energy*, 2014. DOI: 10.1680/nme.14.00024.

[3] E.G. da Silveira Firmiano, A.C. Rabelo, C.J. Dalmaschio, A.N. Pinheiro, E.C. Pereira, W.H. Schreiner and E.R. Leite, *Adv. Energy Mater.*, 2014, **4**, 1301380.

[4] S. Patil, A. Harle, S. Sathaye and K. Patil, Crystengcomm, 2014, 16, 10845-10855.

[5] B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, Y. Zhong and Y. Wu, *Carbon*, 2016, 99, 35-42.
[6] K.-J. Huang, L. Wang, J.-Z. Zhang and K. Xing, *J. Electroanal. Chem.*, 2015, 752, 33-40.

[7] L.-Q. Fan, G.-J. Liu, C.-Y. Zhng, J.-H. Wu and Y.-L. Wei, *Int. J. Hydrogen Energ.*,2015, **40**, 10150-10157.

[8] M. Yang, S.-K. Hwang, J.-M. Jeong, Y.S. Huh and B.G. Choi, *Synthetic Met.*, 2015, **209**, 528-533.

[9] M. Yang, J.-M. Jeong, Y.S. Huh and B.G. Choi, Compos. Sci. Technol., 2015, 121, 123-128.

[10] R. Thangappan, S. Kalaiselvam, A. Elayaperumal, R. Jayavel, M. Arivanandhan, R. Karthikeyan and Y. Hayakawa, *Dalton T.*, 2016, **45**, 2637-2646.