Self-Supported Tungsten/Tungsten Dioxide Nanowires Array as an Efficient Electrocatalyst in Hydrogen Evolution Reaction

Zhao Yaoxing,^{a,b} Cuncai Lv,^b Qingli Huang,^c Zhipeng Huang,^{b*} Chi Zhang^{b*}

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang

212013, China.

^b Functional Molecular Materials Research Centre, Scientific Research Academy, and

China-Australia Joint Research Center for Functional Materials, Jiangsu University,

Zhenjiang, 212013, China.

^c Testing Center, Yangzhou University, Yangzhou, 225009, China.

*Corresponding author. Zhipeng Huang, Chi Zhang.

E-mail: zphuang@ujs.edu.cn, chizhang@ujs.edu.cn.

Electronic Supplementary Information

Fig. S1 XRD pattern of WO₃ NA@CP.

Fig. S2 Optical photograph of (a) pristine CP, (b) WO₃ NA@CP, (C) WO₂/W CSNA@CP

Fig. S3 The SEM image of precursor (a) and WO₃ NA@CP.

Fig. S4 a) and b) are the TEM images of the W/WO_2 nanorod.

Fig. S5 (a) and (b) show different conditions of annealing, different temperatures and different annealing times are shown for comparison in acidic solution.

Fig. S6 The XRD patterns of different conditions of annealing.

Catalyst	Substrate	Current density	Overpotential(mV)	Tafel slope (mV/dec)	Electrolyte	
		(mA/cm ²)	2			
WO ₃ /CNT ¹	GCE	3.8	426	104	0.1M H ₂ SO ₄	
WO ₃ .H ₂ O and	GCE	7.5	318	97	$1 M H_2 SO_4$	
WO ₃						
Nanoplates ²						
Ta-doped WO ₃ ³	GCE	10.72	528	65	$1 M H_2 SO_4$	
WO ₃	GCE	20	406		$1 M H_2 SO_4$	
nanoparticles4						
WO ₃ Nanorods ⁵	GCE	20	396	188	$1 M H_2 SO_4$	
WO ₃ /C	GCE	0.7	3	29	$0.5M H_2SO_4$	
nanoparticles6						

Table S1 Summary of HER performance of representative tungsten oxides catalysts.

Fig. S7 Polarization curves of the WO₂/W NA@CP in basic solution.

Fig. S8 (a) XRD pattern of WO₂/W NA@CP after it. (b) SEM image of WO₂/W NA@CP after it

Fig. S9 Equivalent circuit used to fit the EIS data. R_s is the overall series resistance, CPE_1 and R_1 are the constant phase element and resistance describing electron transport at substrate/catalyst interface, respectively, CPE_{dl} is the constant phase element of the catalyst/electrolyte interface, and R_{ct} is the charge transfer resistance at catalyst/electrolyte interface.

Sample	$R_s(\Omega \ cm^2)$	Qct	N _{ct}	$R_{ct}(\Omega$	Q_1	N_1	$R_1(\Omega$
		(F cm ⁻² S ⁿ⁻		.cm ²)	(F cm ⁻² S ⁿ⁻		cm ²)
		$^{1}/cm^{2})$			¹ /cm ²)		
WO ₃ NA@CP	1.45	0.0637	0.651	149.4	7.539*10 ⁻⁶	0.804	0.80
WO ₂ /W	0.92	0.0647	0.823	14.69	4.09*10 ⁻⁵	0.947	1.91
CSNA@CP							

Table S2. The fitting results of EIS spectra

Reference

- [1] Chekin F, Samira B, Sharifah BAH, Synthesis of Tungsten Oxide Nanorods by the Controlling Precipitation Reaction: Application for Hydrogen Evolution Reaction on a WO₃ Nanorods/Carbon Nanotubes Composite Film Modified Electrode, J Chin Chem Soc 2013; 60: 447-51.
- [2] Hu WH, Han GQ, Dong B, Liu CG, Facile Synthesis of Highly Dispersed WO₃.H₂O and WO₃ Nanoplates for Electrocatalytic Hydrogen Evolution, J Nanomater 2015; 346086: 6 pages.
- [3] Xie X, Mu W, Li X, Wei H, Jian Y, Yu Q, Zhang R, Lv K, Tang H, Luo S,

Incorporation of tantalum ions enhances the electrocatalytic activity of hexagonal WO₃ nanowires for hydrogen evolution reaction, Electrochem Acta 2014; 134: 201-8.

- [4] Ganesan R, Gedanken A, Synthesis of WO₃ nanoparticles using a biopolymer as a template for electrocatalytic hydrogen evolution, Nanotechnology 2008; 19: 025702.
- [5] Rajeswari J, Kishore PS, Viswanathan B, Varadarajan TK, Facile Hydrogen Evolution Reaction on WO₃ Nanorods, Nanoscale Res Lett 2007; 2: 496–503.
- [6] Zheng H, Mathe H, Hydrogen evolution reaction on single crystal WO₃/C nanoparticles supported on carbon in acid and alkaline solution, Elsevier Ltd 2011; 36: 1960-4.