Electronic Supplementary Information

(ESI)

Insight into the effect of ion source for the solution processing of perovskite films

Chongwen Li,^{*a, b,#*} Zaiwei Wang,^{*b,#*} Yue Chang,^{*b*} Yingxia Zong,^{*b*} Fuxiang Ji,^{*b*} Bo Zhang,^{*b*} Haiyan Li,^{*a*,*} Shuping Pang ^{*b*,*}

^a Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266101, P.R. China; <u>*lihy@ouc.edu.cn*</u> (H.L.)

^b Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China; *pangsp@qibet.ac.cn* (S.P.)

Electronic Supplementary Information (ESI) available: experimental details. See DOI: 10.1039/x0xx00000x

[#] These authors contributed equally to this work

Experimental Section

Perovskite Solution and Substrate Preparation. Methylammonium iodide (MAI) was synthesized by reacting 27.6 mL methylamine, $27 \sim 32$ wt% in ethanol (Sinopharm, China), with hydroiodic acid (HI), 45 wt% in water (Sinopharm, China) at 0°C for 2 h under argon atmosphere. HI was added dropwise while stirring. Methylammonium acetate (MAAc) was synthesized by reacting 30.3 mL methylamine, $27 \sim 32$ wt% in ethanol (Sinopharm, China), with 10mL glacial acetic acid (98 wt%, Sinopharm, China) at 0 °C for 2 h. The acid was added dropwise while stirring. After complete reaction, the powder was collected by rotary evaporation, which was washed and purified with a mixture of ethanol and diethyl by air-pump filtration. The resulting powder was dried at 60 °C under vacuum before use. All the solutions were generated by dissolve reagents in anhydrous N,N-Dimethylformamide (Aldrich-Sigma, U.S.A.) with final concentration of ~ 40 wt%. Other reagents were purchased from Sinopharm, China.

Fluorine-doped tin oxide (FTO) coated glass was patterned by etching with 1 M HCl diluted in Milli-Q water and Zn powder. The etched substrate was then cleaned subsequently in water, saturated KOH solution in isopropanol, ethanol and acetone. The substrate was cleaned in oxygen plasma before use. A 30 nm thick dense TiO_2 hole-blocking layer (prepared as we reported before) was deposited on the FTO glass by spin-coating (4000 rpm, 30 s), and annealed at 150°C for 30 min in air. Afterwards, a 300 nm thick TiO_2 mesoporous layer was deposited on the TiO_2 dense layer by spin-coating (4000 rpm, 30 s) a diluted commercial TiO_2 paste (1:4 with ethanol by weight), followed by a sintering heat-treatment of 550 °C for 30 min in air.

Device Fabrication and Testing. The fresh films were prepared by spin-coating a 40 wt% perovskite solution at 4000 rpm in a nitrogen-filled glovebox. After that, the films were annealed at 100 °C for 5 min. The spiro-OMeTAD hole-transporting layer was prepared by dissolving 72.3 mg of spiro-MeOTAD in 1 mL of chlorobenzene (99.8%, Aldrich-Sigma, U.S.A.), to which 28.8 μ L of 4-tert-butylpyridine (96%, Aldrich-Sigma, U.S.A.) and 17.5 μ L of lithium bis (trifluoro-methanesulfonyl) imide (LITSFI, Aldrich-Sigma, U.S.A.) solution (520 mg LITSFI (98%) in 1 mL acetonitrile (99.8%, Aldrich-Sigma, U.S.A.) were added and then deposited by spin-coating (3000 rpm, 30 s). Finally, sliver electrodes were thermally evaporated under vacuum to complete the PSCs fabrication.

Current density (J)–voltage (V) characteristics of the PSCs were measured using a 2400 Sourcemeter (Keithley, U.S.A.) under simulated one-sun AM 1.5G 100 mW/cm² intensity (Oriel Sol3A Class AAA, Newport, U.S.A.), under both reverse (from V_{oc} to J_{sc}) and forward (from J_{sc} to V_{oc}) scans. The step voltage was 50 mV with a 10 ms delay time per step. The maximum-power output stability of the PSCs was measured by monitoring the J output at the maximum-power V bias (deduced from the reverse-scan J–V curves). The J output is converted to PCE output using the following relation: PCE = {J (mA cm⁻²) × V (V))/(100 (mW cm⁻²)}. A shutter was used to switch on and off the one-sun illumination on the PSC. Typical, active area of the PSCs is 0.09 cm² defined using a non-reflective metal mask.

Material and Film Characterization. X-ray diffraction (XRD) patterns were obtained on a diffractometer (D8 Advance, Bruker, Germany) using Cu K α radiation, with 0.02° step. UV–vis absorption spectra of the perovskite films were recorded using a spectrometer (U-4100, Hitachi, Japan). A field-emission SEM (S-4800, Hitachi, Japan) was used to observe the top surfaces and cross sections. All films for XRD, SEM, and UV–vis were deposited on FTO/glass substrates with a 30 nm layer of dense TiO₂ and a 300 nm layer of mesoporous TiO₂. The precursor solutions with or without additives were spin-coated on these substrates at 4000 rpm for 40 s.

Table S1. Calculated J_{sc} of devices made from S-NH₄Ac, S-MAAc and S-PbAc₂ precursor solutions.

Routes	S-NH ₄ Ac	S-MAAc	S-PbAc ₂
Calculated J _{sc} (mA/cm ²)	18.11	18.10	18.05

Table S2. PCE statistics of PSCs fabricated from S-NH₄Ac, S-MAAc and S-PbAc₂ precursor solutions.

PSC No.		J _{SC} (mA/cm ²)	$V_{OC}(V)$	FF (%)	PCE (%)
S-NH4Ac	1	19.08	0.942	57.22	10.28
	2	19.11	0.936	57.15	10.22
	3	19.02	0.944	57.21	10.27
S-MAAc	1	19.12	0.947	55.23	10.00
	2	19.08	0.945	55.31	10.00
	3	19.03	0.942	55.80	9.70
S-PbAc ₂	1	19.17	0.939	57.25	10.30
	2	19.05	0.938	57.33	10.24
	3	19.11	0.941	56.98	10.25

 Table S3. Compositions of different precursor solutions.

S-NH ₄ Cl	S-MAC1	S-PbCl ₂
$NH_4Cl:MAI:PbI_2 = 1:1:1$	$NH_4I:MACI:PbI_2$ =1:1:1	MAI: NH ₄ I:PbCl ₂ :PbI ₂ =1:1:0.5:0.5

Figure S1. EQE for devices made from S-NH₄Ac, S-MAAc and S-PbAc₂ precursor solutions.

Figure S2. (A-C) SEM images of perovskite films made from S-NH₄Ac, S-MAAc and S-PbAc₂ precursor solutions. (A) MAI, PbI₂ and NH₄Ac (1:1:1 molar ratio) or S-NH₄Ac; (B) NH₄I, PbI₂ and MAAc (1:1:1 molar ratio) or S-MAAc; (C) NH₄I, MAI, PbAc₂ and PbI₂ (1:1:0.5:0.5 molar ratio) or S-PbAc₂.

Figure S3. UV–vis absorption spectra of perovskite films made from S-NH₄Cl, S-MACl and S-PbCl₂ precursor solutions.

Figure S4. X-ray diffraction spectra of perovskite films made from S-NH4Cl, S-MACl and S-PbCl₂ precursor solutions.

Figure S5. J–V curses of devices made from S-NH₄Cl, S-MACl and S-PbCl₂ precursor solutions with forward and reverse scan.