Supporting Information

Triphenylamine based Lab-on-a-molecule for the highly selective and sensitive detection of Zn²⁺ and CN⁻ in aqueous solution

Shichao Sun^a, Qinghai Shu^{a,*}, Pengchao Lin^a, Yanyue Li^a, Shaohua Jin^a, Xin Chen^{b,*}, Dequan Wang^{c,*}

^a School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China. Email: qhshu121@bit.edu.cn.

^b State key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.

Email: chenxin@sysucc.org.cn.

^c Institute of Theoretical Chemistry, Jilin University, Changchun, China.

Email: dequan_wang@jlu.edu.cn.

Fig. S1 The synthesis route of TATP.

Fig. S2 Crystal structure of TATP and its unit cell. The deposit CCDC number: 1476312.

Fig. S3 Packing cell of the crystal structure of TATP.

Fig. S4 (a) UV/vis spectra of **TATP** (10 μ M) in 0.1 M Tris-ClO₄ buffer solution (pH = 7.24, DMF: buffer = 1 / 2, v / v) after addition of 50.0 equiv of various metal ions. Inset: The color changes of **TATP** (10 μ M) upon addition of Zn²⁺; (b) Fluorescence emission spectra (λ_{ex} = 350 nm) of **TATP** (10 μ M) in the presence of 50.0 equiv of various metal ions in 0.1 M Tris-ClO₄ buffer solution (pH = 7.24, DMF: buffer = 1 / 2, v / v).

Fig. S5 Jobs plot of **TATP** and Zn^{2+} in 0.1 M Tris-ClO₄ buffer solution (pH = 7.24, DMF: buffer = 1 / 2, v / v). The total concentration of Zn^{2+} and **TATP** is 1×10^{-4} M.

Fig. S6 UV/vis (a) and emission spectra (b, λ_{ex} = 350 nm) of **TATP** (10 μ M) in the presence of 50.0 equiv of various metal ions in 0.1 M Tris-ClO₄ buffer solution (pH = 7.24, DMF: buffer = 1 / 2, v / v); Inset: The solution

color changes of TATP (10 $\mu M)$ upon addition of $CN^{\text{-}}.$

Fig. S7 UV/vis spectra of **TATP** (10μ M) in 0.1 M Tris-ClO₄ buffer solution (pH = 7.24, DMF: buffer = 1 / 2, v / v) after addition of 0.5-50.0 equiv of CN⁻.

Fig. S8 The absorption intensity of **TATP** at 410 nm as a function of CN⁻ equivalent in 0.1 M Tris-ClO₄ buffer solution (pH = 7.24, DMF: buffer = 1 / 2, v / v).

Figure S9 Jobs plot of **TATP** and CN⁻ in 0.1 M Tris-ClO₄ buffer solution (pH = 7.24, DMF: buffer = 1 / 2, v / v). The total concentration of CN⁻ and **TATP** is 1×10^{-4} M.

Fig. S10 ¹H-NMR, ¹³C-NMR and MS spectrogram (top to bottom) of Tris(4-aminophenyl)amine.

Fig. S11 ¹H-NMR, ¹³C-NMR and MS spectrogram (top to bottom) of TATP.

Fig. S12 ¹H NMR titration of TATP by adding different equivalents of Zn²⁺ into TATP solution in DMSO-d₆.

Fig. S13 ¹H NMR titration of TATP by adding different equivalents of CN⁻ into TATP solution in DMSO-d₆.