Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

## Electronic supplementary information

Degradation of roxarsone in sulfate radical mediated oxidation process and formation

## of polynitrated by-products

Yuefei Ji<sup>a1</sup>, Yuanyuan Shi<sup>a1</sup>, Deyang Kong<sup>b</sup>, Junhe Lu<sup>a\*</sup>

<sup>a</sup> College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing

210095, China

<sup>b</sup> Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC,

Nanjing, 210042, China

\* Corresponding author. Tel.: +86 25 84395164; fax: +86 25 84395210.

E-mail: yuefeiji@njau.edu.cn (Y. Ji); jhlu@njau.edu.cn (J. Lu).

<sup>1</sup> The authors contributed equally to this research.

*Text S1.* Detailed experimental procedures for separation and enrichment of intermediate products.

An aqueous solution (100 mL) contained 50  $\mu$ M ROX or nitrophenols and 2 mM persulfate was allowed to react for 420 min at 60°C and then chilled in an ice bath for 10 min to stop the reaction. Prior to SPE, the reaction mixture was acidified to pH 3.0 by 50 mM H<sub>2</sub>SO<sub>4</sub>. The reaction solution was then concentrated by SPE workstation using Oasis HLB cartridges (WAT106202, Waters). Prior to extraction, the cartridge was activated by 5 mL methanol, 5 mL Milli-Q water followed by 5 mL acidified Milli-Q water (pH adjusted to 3.0 with 50 mM H<sub>2</sub>SO<sub>4</sub>). The quenched reaction solution was percolated through the cartridge at a flow rate of 5 mL min<sup>-1</sup>. After sample passage, the cartridge was rinsed with 2 mL Milli-Q water and 2 mL 5% aqueous methanol, sequentially. The extracts were finally eluted with 2 mL methanol twice. The eluents were combined and purged by gentle stream of N<sub>2</sub> to approximately 1 mL.

## Text S2. Intermediate products identification by LC-ESI-MS/MS

Reaction products were identified using liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), consisting of an Agilent 1200 series HPLC coupled to a G6410B triple quadrupole mass spectrometer (Agilent Technologies, USA). Separation was accomplished using an Agilent ZORBAX Eclipse Plus C18 column (3.5  $\mu$ m, 2.1 mm × 150 mm). Elution was performed at a flow rate of 0.2 mL min<sup>-1</sup> with H<sub>2</sub>O containing 0.1% (v/v) formic acid as eluent A and MeOH containing 0.1% (v/v) formic acid as eluent B, employing a linear gradient as follows. 50% B, 0 – 20 min; 50% to 100% B, 20 -20.1 min; 100% B, 20.1 – 25 min. Mass spectral analysis was conducted in positive mode using an electrospray ionization (ESI) source. Instrument parameters were as follows: capillary voltage 3.8 kV, fragmentor 135 V, desolvation gas (nitrogen,  $\geq$  99.995% ) flow 8 L min<sup>-1</sup>, temperature 350 °C, nebulizer pressure 30 psi, and nitrogen ( $\geq$ 99.999%) was used as collision gas. Mass analyzer was operated in full scan mode (m/z range 50 -600) in order to identify the products. Products ion scan MS/MS was performed for both sample and authentic standard (collision energy 10 to 30 eV, precursor ion m/z: 183 and 228) for structural assignment of 2,4-dinitrophenol and 2,4,6-trinitrophenol, respectively. Instrument control, data acquisition and processing were performed using the associated Agilent Mass Hunter Qualitative analysis software (version B.04.00).

| Compound                                  | Analytical column <sup>a</sup>     | Eluent composition <sup>b</sup> | Detection<br>wavelength (nm) <sup>c</sup> |
|-------------------------------------------|------------------------------------|---------------------------------|-------------------------------------------|
| Roxarsone (ROX)                           | Agilent Zorbax Eclipse<br>Plus C18 | 70% H <sub>2</sub> O + 30% MeOH | 280                                       |
| 2-Nitrophenol (2-NP)                      | Agilent Zorbax Eclipse<br>Plus C18 | 50% H <sub>2</sub> O + 50% MeOH | 275                                       |
| 3-Nitro-4-hydroxybenzoic acid<br>(3N4HBA) | Agilent Zorbax Eclipse<br>Plus C18 | 50% H <sub>2</sub> O + 50% MeOH | 235                                       |
| 4-Chloro-2-nitrophenol<br>(4Cl2NP)        | Agilent Zorbax Eclipse<br>Plus C18 | 50% H <sub>2</sub> O + 50% MeOH | 272                                       |

**Table S1.** Parameters for quantification of ROX and structurally related nitrophenols by HPLC analysis.

<sup>a</sup> Agilent Zorbax Eclipse Plus C18 column (5  $\mu$ m, 250 mm × 4.6 mm I.D.). <sup>b</sup> Both mobile phases contained 0.1% formic acid, and the flow rate of eluent was 1.0 mL min<sup>-1</sup>. <sup>c</sup> The detection wavelength was chosen according to the maximum absorbance in UV-vis spectrum of each compound.



**Fig. S1.** Product ion scan mass spectrum of (A) m/z 183 in concentrated ROX degradation sample, and (B) 10  $\mu$ M 2,4-trinitrophenol (2,4-DNP) standard. A comparison of the two spectra confirms the formation of 2,4-DNP in heat activated PS oxidation of ROX. Chromatographic separation conditions were provided in Text S2. MS analysis condition: ESI(+), fragmentor voltage, 135 V; collision voltage, 20 eV; precursor ion, m/z 183.



**Fig. S2.** Product ion scan mass spectrum of (A) m/z 228 in concentrated ROX degradation sample, and (B) 10  $\mu$ M 2,4,6-trinitrophenol (2,4,6-TNP) standard. A comparison of the two spectra confirms the formation of 2,4,6-TNP in heat activated PS oxidation of ROX. Chromatographic separation conditions were provided in Text S2. MS analysis condition: ESI(+), fragmentor voltage, 135 V; collision voltage, 20 eV; precursor ion, m/z 228.



**Fig. S3.** Negative full scan mass spectra of the degradation products generated by heat activated persulfate oxidation of: (A) 2-nitrophenol (2-NP); (B) 4-chloro-2-nitrophenol (4Cl2NP); and (C) 3-nitro-4-hydroxybenzoic acid (3N4HBA). Results showed that 2,4-DNP and 2,6-DNP, 4-chloro-2,6-dinitrophenol, and 2,4-DNP were generated in heat activated persulfate oxidation of 2-NP, 4Cl2NP, and 3N4HBA, respectively. Note that, characteristic isotope ratio of 3:1 was observed for m/z 217 in (B), implying that the Cl atom was maintained in the product.