Supporting Information

Bioactive calcium silicate extracts regulate the morphology and stemness of human embryonic stem cells at initial stage

a. Center of Biomec hanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
b. Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
c. Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
d. School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
e. Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
${ }^{+}$Co-first authors: these authors contributed equally to this work.
\# Corresponding authors.

Table S1. Summarized primer sequences of the target genes tested.

Transcript	Gene bank	Primer Sequence	$\mathrm{TM}\left({ }^{\circ} \mathrm{C}\right)$
Oct-4	NM_001285987	F: 5^{\prime} GAC AAC AAT GAA AAT CTT CAG GAG A 3^{\prime} R: 5' TTC TGG CGC CGG TTA CAG AAC CA 3'	60
Nanog	XM_011520852	F: 5^{\prime} AGC CTC TAC TCT TCC TAC CAC C 3^{\prime} R: 5^{\prime} TCC AAA GCA GCC TCC AAG TC 3^{\prime}	60
Bra	XM_011536081	F: 5^{\prime} CCA GGT CCC GAA AGA TG 3^{\prime} R: 5^{\prime} TGC CAA AGT TGC CAA TAC 3^{\prime}	50
Foxa2	XM_011529231	F: 5^{\prime} ACG ACT GTT TCC TGA AGG T 3^{\prime} R: 5^{\prime} TTG AAG GCG TAG TGG TGT 3^{\prime}	52
ALP	BC021289	F: 5' AGC CCT TCA CTG CCA TCC TGT 3' R: 5^{\prime} ATT CTC TCG TTC ACC GCC CAC 3^{\prime}	65
Runx2	AH005498	F: 5' TCA CCT TGA CCA TAA CCG TCT 3' R: 5' CGG GAC ACC TAC TCT CAT ACT 3^{\prime}	65
Actin	XM_006715764	F: 5^{\prime} TCA CCA CCA CGG CCG AGC G 3^{\prime} R: 5^{\prime} TCT CCT TCT GCA TCC TGT CG 3^{\prime}	60

Table S2. Summarized mild apoptosis percentages for hESC H9 cells. ${ }^{\dagger}$

	Apoptosis percentage at 1+3 day	
	Negative	Apoptosis
Con	$99.03 \pm 0.76 \%$	$0.97 \pm 1.52 \%$
$1 / 256$	$99.01 \pm 0.84 \%$	$0.99 \pm 0.84 \%$
$1 / 64$	$98.31 \pm 1.57 \%$	$1.69 \pm 1.57 \%$

${ }^{\dagger}$: All colonies were first placed in plain PSCeasy medium for one day, and then cultured in plain, $1 / 256$, or $1 / 64$ CS-supplemented PSCeasy medium for additional three days. TUNEL kit was used to detect, via confocal microscopy, the mild apoptosis cells and data were obtained from $15 \sim 17$ colonies in each cases.

Fig. S1 Typical optical images for hESC H9 colonies on Matrigel. All colonies were first placed in plain PSCeasy medium for one day, and then cultured in plain ($1^{\text {st }}$ row) $1 / 256$ (2nd row), or $1 / 64$ ($3^{\text {rd }}$ row) CS-supplemented PSCeasy medium for additional three days. Scale bar $=400 \mu \mathrm{~m}$.

Fig. S2 Apoptosis analysis via flow cytometry for hESC H9 colonies on Matrigel. All colonies were first placed in plain PSCeasy medium for one day, and then cultured in plain ($1^{\text {st }}$ column), $1 / 256$ ($2^{\text {nd }}$ column), or $1 / 64$ ($3^{\text {rd }}$ column) CS-supplemented PSCeasy medium for additional three ($1^{\text {st }}$ row) or six ($2^{\text {nd }}$ row) days. Each condition has nine replicates.

Fig. S3 Typical apoptosis analysis via confocal microscopy for hESC H9 colonies on Matrigel. All colonies were first placed in plain PSCeasy medium for one day, and then cultured in plain ($1^{\text {st }}$ row), $1 / 256$ ($2^{\text {nd }}$ row), or $1 / 64$ ($3^{\text {rd }}$ row) CS-supplemented PSCeasy medium for additional three ((1+3) days; $1^{\text {st_}} 3^{r \text { rd }}$ columns) or six ($(1+6)$ days; $4^{\text {th }}-6^{\text {th }}$ columns) days. Tunnel staining ($1^{\text {st }}$ column) was visualized under three conditions when nucleus staining ($2^{\text {nd }}$ column) and optical images ($3^{\text {rd }}$ column) serve as reference. Black dotted lines illustrate the contour of the colonies.

Fig. S4 Morphological analysis of hESC H9 colonies in plain (black bars), 1/256 (light grey bars), or 1/64 (dark grey bars) CS-supplemented PSCeasy medium for short- (1st row) or long-period (2 $2^{\text {nd }}$ row) culture. Data are obtained from the immunostaining images in three repeated tests and presented as the mean \pm SD of colony circularity ($1^{\text {st }}$ column) and aspect ratio ($2^{\text {nd }}$ column), respectively, for totally 60 colonies.

