Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Structural grounds for the 2-aminopurine mutagenicity: A novel insight into the old problem of the replication errors

Ol'ha O. Brovarets'^{a,b,⊠}, Horacio Pérez-Sánchez^{c,⊠} & Dmytro M. Hovorun^{a,b}

^aDepartment of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine

^bDepartment of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave., 03022 Kyiv, Ukraine

°Computer Science Department, Bioinformatics and High Performance Computing (BIO-HPC) Research Group,

Universidad Católica San Antonio de Murcia (UCAM), 30107 Guadalupe (Murcia), Spain

Corresponding authors. E-mail: o.o.brovarets@imbg.org.ua; hperez@ucam.edu

8. ,,								- (-	$(\mathbf{r}) = (\mathbf{r})$)(-)-
Base pair/complex/TS	AH…B H-bond	$ ho^{\mathrm{a}}$	$\varDelta ho^{ m b}$	100·€ ^c	$d_{A \cdots B}{}^{\mathrm{d}}$	$d_{H\cdots B}^{e}$	$\varDelta d_{AH}^{\rm f}$	∠AH…B ^g	Δv^h	$E_{AH\cdots B}{}^{i}$	$\varDelta G^{j}$	$\boldsymbol{\mu}^k$
2AP.H.O	OH…N1	0.031	0.001	3 70	2 836	1 030	0.018	152 /	353.6	5.8/	0.00	3 1 5
2AI 1120	N2H····O	0.031	0.072	<u> </u>	2.850	2 070	0.018	132.4	118.0	2.04	0.00	5.15
TSAAR HAG AAR* HAG	N1H···O	0.096	0.126	3 39	2.754	1 4 2 9	-	150.4	-	-	22.05	4 82
24P*+H20 24P*+H20	N1H···O	0.029	0.103	4 75	2.170	1.129	0.016	147.9	263.5	4 93	17.41	3.28
	OH···N2	0.029	0.102	4.59	2.727	1.823	0.030	149.9	561.7	7.54	17.11	5.20
A·H ₂ O	N6H…O	0.020	0.076	5.93	2.917	2.044	0.009	142.6	149.4	3.45	0.00	2.94
	OH···N1	0.031	0.090	3.82	2.829	1.933	0.019	150.6	359.8	5.90		
TS4 120	N6⁺H···O⁻	0.129	0.020	3.11	2.438	1.315	0.193	151.1	1728.2	13.56	18.40	4.65
• ∼A·H20⇔A*•H20	N1 ⁺ H···O ⁻	0.104	0.111	3.31	2.461	1.399	0.137	149.5	1549.6	12.82		
A*·H ₂ O	OH…N6	0.036	0.098	4.27	2.755	1.863	0.026	148.6	481.1	6.93	9.77	3.28
_	N1H…O	0.027	0.097	4.26	2.831	1.923	0.013	145.8	220.9	4.44		
2AP·T(WC)	C6H···O4	0.005	0.016	2.18	3.879	2.792	0.0004	132.0	-3.1	0.90*	0.00	3.15
	N3H…N1	0.040	0.095	6.42	2.876	1.832	0.032	179.3	567.1	7.58		
	N2H···O2	0.023	0.082	5.68	2.998	1.982	0.010	174.9	171.4	3.78		
TS ^{2AP+·T-} 2AP·T(WC)↔2AP·T*(w)	$N1^+H^{}O4^-$	0.033	0.099	7.55	2.918	1.869	0.036	143.2	567.7	4.48	15.48	6.45
	N1 ⁺ H···N3 [−]	0.025	0.081	26.93	3.064	2.015	0.036	146.1	567.7	3.10		
	$N2^{+}H^{-}N3^{-}$	0.022	0.070	3.88	3.119	2.093	0.013	143.7	296.8	3.09		
	$N2^+H^{}O2^-$	0.016	0.053	34.47	3.201	2.175	0.019	151.8	296.8	2.20		
2AP·T*(w)	O4H…N1	0.057	0.097	5.05	2.698	1.678	0.050	169.2	954.1	9.98	7.33	1.52
	N2H…N3	0.029	0.085	7.39	2.987	1.965	0.016	168.9	295.0	5.27		
$TS_{2AP \cdot T^*(w) \leftrightarrow 2AP^* \cdot T(w)}$	N1H…O4	0.060	0.141	3.37	2.667	1.604	-	178.9	-	18.63*	14.46	3.39
2AP*·T(w)	N1H…O4	0.038	0.122	3.58	2.804	1.770	0.023	180.0	411.1	6.36	15.28	2.88
	N3H…N2	0.049	0.096	6.42	2.810	1.748	0.049	175.0	828.4	9.27		
	N6H…O4	0.026	0.093	4.39	2.946	1.926	0.014	173.5	238.7	4.65	0.00	1.88
A·T(WC)	N3H…N1	0.040	0.093	6.49	2.886	1.841	0.032	178.8	567.5	7.58		
	C2H···O2	0.004	0.014	3.40	3.975	2.890	0.0002	132.3	-4.8	0.74*		
$TS^{A+\cdot T} - A \cdot T(WC) \leftrightarrow A \cdot T^*(w)$	N6 ⁺ H···O4 ⁻	0.023	0.097	6.47	2.974	1.953	0.012	140.6	188.0	4.01	20.28	7.77
	$N1^+H^{}O4^-$	0.055	0.128	0.19	2.723	1.656	0.053	153.6	1668.9	13.32		
	$C2^{+}H^{-}N3^{-}$	0.009	0.030	57.50	3.751	2.665	0.002	113.5	-28.1	1.60*		
A·T*(w)	N6H…N3	0.017	0.056	10.90	3.018	2.240	0.013	132.0	194.5	4.10	17.47	4.16
	O4H…N6	0.028	0.078	6.20	2.930	1.963	0.016	166.1	322.7	5.55		
$TS^{2AP+\cdot T}$	C6H…N3	0.012	0.058	24.35	3.125	2.504	0.001	115.1	-11.3	2.09*	22.47	9.59
	N1H···O2	0.057	0.058	0.74	2.666	1.641	0.054	159.4	840.4	9.34		
	N2H···O2	0.019	0.058	6.61	2.906	2.047	0.009	140.6	136.6	3.24		
2AP·T* ₀₂ (w)	C6H···N3	0.011	0.058	0.43	3.309	2.511	0.000	129.4	-10.4	1.71*	17.10	7.05
	O2H…N1	0.062	0.058	5.13	2.666	1.647	0.054	174.9	1033.7	10.40		
$TS^{A+\cdot T} - A \cdot T(WC) \leftrightarrow A^{+} \cdot T - (w)$	$N6^{+}H^{-}O4^{-}$	0.020	0.065	16.30	3.102	2.070	0.024	153.2	377.5	2.82	16.72	6.77
	N6 ⁺ H···N3 [−]	0.023	0.075	0.89	3.097	2.064	0.024	140.7	377.5	3.24		
	N1⁺H···N3⁻	0.022	0.075	53.95	3.136	2.090	0.032	139.6	503.7	2.55		
-	N1 ⁺ H···O2 ⁻	0.034	0.101	4.19	2.893	1.847	0.032	150.4	503.7	4.56		
A+•T-(w)	N6 ⁺ H···N3 [−]	0.069	0.086	5.82	2.693	1.609	0.078	173.8	1314.2	11.78	12.43	6.86
	N1 ⁺ H···O2 [−]	0.076	0.140	3.66	2.602	1.508	0.080	180.0	1261.5	11.53		
$TS_{A+\cdot T-(w)\leftrightarrow A\cdot T^*O2(w)}$	N6H···N3	0.047	0.099	6.37	2.800	1.765	-	168.0	-	8.57*	10.73	5.63
A·T* ₀₂ (w)	N6H···N3	0.034	0.088	1.71	2.944	1.915	0.020	167.1	391.9	6.19	10.91	3.96
	O2H…N1	0.071	0.081	0.86	2.644	1.608	0.067	171.9	1239.6	11.43		

Table S1. Electron-topological, structural, vibrational and energetic characteristics of the intermolecular Hbonds in the investigated complexes and TSs of their tautomerisation involving DNA bases and 2AP (see Fig. 1), their energetic and polar characteristics obtained at the B3LYP/6-311++G(d,p) level of theory (ε =1).

Table S1 (continued).												
Base pair/TS	AH…B/ AH…HB H-bond/ N…N van der Waals contact	ρ	Δρ	100·ε	$d_{A\cdots B/} \ d_{N\cdots N}$	d _{H···B∕} dN···N	Δd_{AH}	∠AH…B	Δv	$E_{AH\cdots B/}$ $AH\cdots HB/$ $E_{N\cdots N}$	⊿G	μ
A*·2AP(WC)	C6H…N6	0.013	0.039	5.58	3.332	2.388	0.002	144.2	22.3	2.04*	0.00	4.57
· · · · ·	N1H…N1	0.029	0.082	7.01	2.991	1.961	0.019	175.2	346.1	5.77		
-	C2H···HN2	0.001	0.005	75.42	3.668	2.987	0.0008	125.7	14.4	0.17*		
TS _{A*·2AP(WC)↔A*·2APsyn}	С6Н…О6	0.010	0.029	2.16	3.554	2.501	0.0025	162.6	26.8	1.52*	6.54	4.78
A*·2AP _{syn}	C6H···N6	0.012	0.036	5.36	3.413	2.412	0.001	152.4	9.7	1.89*	-0.83	4.93
	N1H···N7	0.027	0.080	6.02	3 009	1 984	0.017	174.3	295.2	5.27		
	N6H···N6	0.027	0.000	7 19	2 918	1.901	0.028	1763	491.5	7.01	0.00	1 75
	N1HN1	0.033	0.091	6.76	2.910	1.003	0.028	170.5	471.5	6.88	0.00	1.75
TC		0.034	0.007	2.24	2.943	1.904	0.030	1/9.0	262.0	5.02	<u> </u>	5 16
$\mathbf{I} \mathbf{S}_{\mathbf{A}^*} \cdot \mathbf{A}(\mathbf{WC}) \leftrightarrow \mathbf{A}^* \cdot \mathbf{Asyn}(\mathbf{TF})$		0.028	0.082	3.34	2.900	1.985	0.021	137.3	302.0	3.92	8.09	3.40
	NIH…N6	0.011	0.033	40.58	3.317	2.447	0.004	143.3	63./	1.61		
	NI…N6	0.002	0.008	67.50	3.790	-	-	-	-	0.39*		
$\mathbf{A^{*}} \cdot \mathbf{A}_{syn}(\mathbf{TF})$	N6H···N6	0.032	0.098	7.17	2.937	1.921	0.023	168.9	410.4	6.35	0.56	7.96
	NIH…N7	0.032	0.093	5.99	2.959	1.929	0.022	173.5	389.1	6.17		
G*·2AP(w)	<u>O6H···N1</u>	0.049	0.100	5.14	2.728	1.735	0.038	168.4	737.7	8.72	-1.33	4.58
moC -2AP+	N2H···NI	0.026	0.077	7.43	3.029	2.016	0.014	1/1.3	271.8	5.02	16 50	10.60
$TS^{G-2AF+}_{G^*-2AP(WC)\leftrightarrow G^*-2AP(W)}$	$\frac{C6^+H^{-1}O6^-}{N1^+H^{-1}O6^-}$	0.013	0.049	67.40	2.961	2.380	0.002	112.0	10.5	2.66*	16.70	10.62
	$\frac{\text{NI}^{+}\text{H}^{-}\text{O6}^{-}}{\text{NI}^{+}\text{H}^{-}\text{NI}^{+}}$	0.028	0.092	26.10	2.754	1.963	0.037	129.7	575.9	3.48		
	NI'H···NI	0.031	0.088	6.86	2.910	1.915	0.037	156.9	575.9	4.15		
	$N2^{+}H^{-}N1^{-}$	0.014	0.045	8.6/	3.166	2.318	0.011	139.9	181.3	2.1/		
	C(II O(0.013	0.044	9.18	3.240	2.280	0.011	133.3	181.3	1.70*	0.00	7 72
G2AF(WC)	N1HN1	0.010	0.029	2.90	2.048	2.470	0.0009	136.9	278.6	6.07	0.00	1.12
-	N2H····N2	0.033	0.088	110 77	2.940	2 654	0.021	170.2	5/ 1	1.24		
TSampura	C6HO6	0.008	0.020	3.61	3.400	2.034	0.003	151.2	0.1	1.24	9.56	767
• G·2AP(WC)↔G·2APsyn	N1H…C6	0.007	0.027	$\frac{3.01}{137.20}$	3 762	2.471	0.001	131.2	<u> </u>	0.58*		/.0/
G-2AP	C6H…O6	0.004	0.039	4 75	3 298	$\frac{2.907}{2.340}$	-0.0003	146.0	-13.8	2 12*	0.60	7.92
G 27 KI syn	N1H…N7	0.012	0.079	5.85	3.021	1 992	0.0005	179.5	293.1	5 25	0.00	1.72
G·A(WC)	N6H···O6	0.027	0.079	3 79	2 866	1.992	0.019	176.6	336.2	5.68	0.00	5 21
	N1H…N1	0.032	0.10	6.64	2.000	1.042	0.01	178.9	429.1	6.51	0.00	5.21
-	C2H···HN2	0.004	0.014	33.40	3.153	2.469	0.0000	124.6	-0.5	0.68*		
$TS^{G-A+}_{G-A(WC)\leftrightarrow G^{*}A(W)}$	N6 ⁺ H···O6 ⁻	0.048	0.162	5.72	2.605	1.648	0.034	150.2	551.2	7.46	17.01	9.26
	N1 ⁺ H···O6 ⁻	0.029	0.091	10.22	2.800	1.946	0.033	136.4	512.3	4.21		
-	N1 ⁺ H···N1 ⁻	0.023	0.072	18.76	3.011	2.045	0.033	152.1	512.3	2.96		
G*·A(w)	N6H…O6	0.012	0.048	5.41	3.043	2.246	0.004	134.6	64.6	1.64	3.76	2.39
	O6H…N1	0.047	0.103	4.89	2.695	1.755	0.034	154.5	655.8	8.19		
$TS_{G \cdot A(WC) \leftrightarrow G \cdot Asyn(TF)}$	N6H…O6	0.024	0.083	3.30	2.942	1.986	0.015	154.7	249.1	4.77	8.39	6.71
	N1H···N6	0.011	0.035	36.44	3.296	2.425	0.003	143.3	59.6	1.46		
	$N1 \cdots N7$	0.002	0.009	104.95	3.802	-	-	-	-	0.40*		
G·A _{syn}	N6H…O6	0.029	0.104	2.85	2.886	1.874	0.016	169.9	276.9	5.08	0.76	7.93
	N1H…N7	0.032	0.087	5.50	2.958	1.926	0.022	175.6	383.8	6.12		
C*·2AP(WC)	C6H…N4	0.007	0.020	3.62	3.804	2.717	0.0006	133.6	-0.5	1.10*	-	2.70
	N3H···N1	0.039	0.094	6.50	2.883	1.841	0.030	178.9	543.4	7.40		
	N2H···O2	0.022	0.082	5.65	3.001	1.985	0.010	174.6	170.3	3.77		• • •
C*·A(WC)	N6H···N4	0.029	0.082	7.63	2.983	1.959	0.021	173.8	371.7	6.01	-	3.10
	N3H…N1	0.040	0.093	6.59	2.895	1.852	0.031	178.9	551.6	7.46		
	C2H…O2	0.005	0.017	1.48	3.628	2.798	0.0001	133.1	-5.9	0.96*		

^aThe electron density at the (3,-1) BCP of the H-bond, a.u.; ^bThe Laplacian of the electron density at the (3,-1) BCP of the H-bond; ^aThe distance between the A (H-bond donor) and B (H-bond acceptor) atoms of the AH···B H-bond, Å; ^eThe distance between the H and B atoms of the AH···B H-bond, Å; ^fThe elongation of the H-bond donating group AH upon the AH···B H-bonding, Å; ^gThe H-bond angle, degree; ^hThe redshift of the stretching vibrational mode v(AH) of the AH H-bonded group, cm⁻¹; ⁱEnergy of the H-bonds, calculated by Iogansen's [1] or Espinose-Molins-Lecomte (EML) [2,3] (marked with an asterisk) formulas, kcal·mol⁻¹; ^jThe relative Gibbs free energy of the complex obtained at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory under normal conditions (ϵ =1), kcal·mol⁻¹; ^kThe dipole moment of the complex, D.

Table S2. Energetic and kinetic characteristics of the (a) $2AP\leftrightarrow 2AP^*$, (b) $A\leftrightarrow A^*$, (c) $2AP\cdot H_2O\leftrightarrow 2AP^*\cdot H_2O$ and (d) $A\cdot H_2O\leftrightarrow A^*\cdot H_2O$ tautomerisations obtained at the different levels of theory for the geometry calculated at the B3LYP/6-311++G(d,p) level of theory in the continuum with $\epsilon=1/\epsilon=4$.

Level of theory	ΔG^{a}	ΔE^{b}	$\Delta\Delta G_{TS}^{c}$	$\Delta\Delta E_{TS}^{d}$	$\Delta\Delta G^e$	$\Delta\Delta E^{\rm f}$	$\tau_{99.9\%}{}^{g}$			
(a) 2AP↔2AP*										
$\epsilon = 1 (v_i = 1798.9i \text{ cm}^{-1})$										
MP2/6-311++G(2df,pd)	21.80	21.93	46.61	50.09	24.81	28.1	4.46·10 ⁵			
MP2/aug-cc-pVDZ	21.69	21.63	47.07	50.55	25.38	28.9	$1.18 \cdot 10^{6}$			
$\epsilon = 4 (v_i = 1849.2i \text{ cm}^{-1})$										
MP2/6-311++G(2df,pd)	19.62	19.60	47.16	50.84	27.54	31.2	4.31·10 ⁷			
MP2/aug-cc-pVDZ	19.26	19.24	47.59	51.27	28.33	32.0	$1.64 \cdot 10^{8}$			
(b) A↔A*										
$\epsilon = 1 (v_i = 1828.5 i \text{ cm}^{-1})$										
MP2/6-311++G(2df,pd)	14.04	12.27	45.72	47.61	31.68	35.3	$4.81 \cdot 10^{10}$			
MP2/aug-cc-pVDZ	13.60	11.82	46.16	48.05	32.56	36.2	$2.13 \cdot 10^{11}$			
$\epsilon = 4 (v_i = 1869.9i \text{ cm}^{-1})$										
MP2/6-311++G(2df,pd)	11.94	10.90	45.98	48.80	34.03	37.9	$2.47 \cdot 10^{12}$			
MP2/aug-cc-pVDZ	11.49	10.45	46.39	49.22	34.90	38.7	$1.07 \cdot 10^{13}$			
(c) $2AP \cdot H_2O \leftrightarrow 2AP^* \cdot H_2O$										
		ε=1 (ν _i =1184	$4.6i \text{ cm}^{-1}$							
MP2/6-311++G(2df,pd)	17.48	16.62	22.20	24.22	4.72	7.59	1.42.10-9			
MP2/aug-cc-pVDZ	17.41	16.55	22.05	24.06	4.63	7.51	1.23.10-9			
		ε=4 (ν _i =906	$.2i \text{ cm}^{-1}$)							
MP2/6-311++G(2df,pd)	17.00	16.06	22.28	23.58	5.29	7.52	4.82.10-9			
MP2/aug-cc-pVDZ	16.78	15.84	21.61	22.91	4.83	7.07	2.24.10-9			
	$(d) A \cdot H_2 O \leftrightarrow A^* \cdot H_2 O$									
$\epsilon = 1 (v_i = 1198.8i \text{ cm}^{-1})$										
MP2/6-311++G(2df,pd)	10.00	9.19	18.59	20.79	8.59	11.60	9.67·10 ⁻⁷			
MP2/aug-cc-pVDZ	9.77	8.96	18.40	20.60	8.63	11.64	1.03.10-6			
		ε=4 (ν _i =693	$.4i \text{ cm}^{-1}$)							
MP2/6-311++G(2df,pd)	10.04	8.95	19.28	20.38	9.24	11.43	$4.67 \cdot 10^{-6}$			
MP2/aug-cc-pVDZ	9.74	8.65	18.51	19.61	8.77	10.96	$2.11 \cdot 10^{-6}$			

^aThe Gibbs free energy of the product relatively the reactant of the tautomerisation reaction (T=298.15 K), kcal·mol⁻¹; ^bThe electronic energy of the product relatively the reactant of the tautomerisation reaction, kcal·mol⁻¹; ^cThe Gibbs free energy barrier for the forward reaction of tautomerisation, kcal·mol⁻¹; ^dThe electronic energy barrier for the forward reaction, kcal·mol⁻¹; ^eThe Gibbs free energy barrier for the reverse reaction of tautomerisation, kcal·mol⁻¹; ^fThe electronic energy barrier for the reverse reaction of tautomerisation, kcal·mol⁻¹; ^gThe time necessary to reach 99.9% of the equilibrium concentration between the reactant and the product of the tautomerisation reaction, s.

Table S3. Energetic and kinetic characteristics of the (a) $2AP \cdot T(WC) \leftrightarrow 2AP^+ \cdot T^-(w)$, (b) $2AP^+ \cdot T^-(w) \leftrightarrow 2AP \cdot T^*_{02}(w)$, (c) $A \cdot T(WC) \leftrightarrow A^+ \cdot T^-(w)$, (d) $A^+ \cdot T^-(w) \leftrightarrow A \cdot T^*_{02}(w)$, (e) $2AP \cdot T(WC) \leftrightarrow 2AP \cdot T^*_{02}(w)$, (f) $A \cdot T(WC) \leftrightarrow A \cdot T^*_{02}(w)$, (g) $2AP \cdot T(WC) \leftrightarrow 2AP \cdot T^*(w)$, (h) $2AP \cdot T^*(w) \leftrightarrow 2AP \cdot T(w)$ and (i) $A \cdot T(WC) \leftrightarrow A \cdot T^*(w)$ tautomerisations *via* the sequential DPT accompanied with structural rearrangements of the bases relative to each other obtained at the different levels of theory for the geometry calculated at the B3LYP/6-311++G(d,p) level of theory in the continuum with $\varepsilon = 1/\varepsilon = 4$.

Level of theory	ΔG^{a}	ΔE^{b}	$\Delta\Delta G_{TS}^{c}$	$\Delta\Delta E_{TS}^{d}$	$\Delta\Delta G^{e}$	$\Delta\Delta E^{f}$	$\tau_{99.9\%}{}^{g}$			
		(a) 2AP·T(V	VC)↔2AP+·T	'-(w)						
$\epsilon = 4 (v_i = 75.8i \text{ cm}^{-1})$										
MP2/6-311++G(2df,pd)	15.98	17.68	18.39	18.32	2.41	0.63	6.43.10-11			
MP2/aug-cc-pVDZ	15.83	17.54	17.95	17.88	2.11	0.34	3.93.10-11			
$(b) 2AP^+ T^-(w) \leftrightarrow 2AP \cdot T^*_{02}(w)$										
$MP2/6_{-}311 + + G(2dfnd)$	-2.74	-3.31	-255	-0.54	0.10	2 77	1.00.10-14			
MP2/aug-cc-nVDZ	-2.74	-2.45	-2.02	0.00	-0.13	2.77	$238 \cdot 10^{-14}$			
	1.00	$(c) A \cdot T(V)$	VC)↔A ⁺ ·T ⁻ (w	v)	0.15	2.11	2.50 10			
$\epsilon = 1 (v_i = 128.5 i \text{ cm}^{-1})$										
MP2/6-311++G(2df,pd)	12.52	13.44	17.44	16.74	4.92	3.30	4.48.10-9			
MP2/aug-cc-pVDZ	12.43	13.36	16.72	16.02	4.29	2.66	1.54.10-9			
	40.55	$\epsilon = 4 (v_i)$	$=113.8i \text{ cm}^{-1}$							
MP2/6-311++G(2df,pd)	10.57	10.91	15.08	14.23	4.51	3.32	$2.24 \cdot 10^{-9}$			
MP2/aug-cc-pVDZ	10.39	10.73	<u>14.41</u>	13.56	4.03	2.83	9.86.10-10			
		$(0) A^{+} I^{-}$	$\underline{W} \leftrightarrow \underline{A \cdot 1}_{02}$	w)						
MP2/6-311++G(2dfnd)	-2.11	-2.69	-210	-0.74	0.01	1.96	2 16.10-14			
MP2/aug-cc-pVDZ	-1.52	-2.11	-1.71	-0.34	-0.18	1.70	$4.02 \cdot 10^{-14}$			
	1.02	ε=4 (ν;	$=869.2i \text{ cm}^{-1}$	0.51	0.10	1.,,	1.02 10			
MP2/6-311++G(2df,pd)	-0.87	-0.92	-1.34	0.38	-0.47	1.30	5.63.10-14			
MP2/aug-cc-pVDZ	-0.19	-0.24	-0.73	0.99	-0.54	1.23	1.12.10-13			
	(e) 2AP·T(W	C)↔2AP·T*	_{D2} (w)						
		ε=1 (ν	$=76.1i \text{ cm}^{-1}$)							
$\frac{MP2/6-311++G(2df,pd)}{MP2/6-311++G(2df,pd)}$	16.41	17.22	22.95	22.46	6.54	5.24	6.94·10 ⁻⁸			
MP2/aug-cc-pVDZ	17.10	17.91	$\frac{22.47}{75.9}$	21.97	5.36	4.06	9.52.10-9			
$MD2/6.211 \pm C(2dfnd)$	12.24	$\frac{\epsilon}{14.29}$	-75.81 cm^{-1}	19.22	5 1 5	2.04	6 50, 10-9			
$\frac{MP2}{3} \frac{11}{1000} \frac{1000}{1000} 1000$	13.24	14.38	17.95	17.88	4 00	2 70	9.43.10-10			
(f) A·T(WC)↔A·T* ₂ (w)										
		$\epsilon = 1 (v_i)$	$=128.5i \text{ cm}^{-1}$,						
MP2/6-311++G(2df,pd)	10.41	10.75	17.44	16.74	7.03	5.99	1.58.10-7			
MP2/aug-cc-pVDZ	10.91	11.25	16.72	16.02	5.81	4.77	2.02.10-8			
		ε=4 (ν _i	=113.8i cm ⁻¹)							
MP2/6-311++G(2df,pd)	9.70	9.99	15.08	14.23	5.38	4.24	9.73·10 ⁻⁹			
MP2/aug-cc-pVDZ	10.19	10.48	14.41	13.56	4.22	3.07	1.36.10-9			
		(g) 2AP-1($WC) \leftrightarrow 2AP \cdot I$	*(W)						
		ε=1 (v	$_{i}=134.2i \text{ cm}^{-1}$							
MP2/6-311++G(2df,pd)	8.17	7.88	19.30	18.17	11.13	10.29	$1.59 \cdot 10^{-4}$			
MP2/aug-cc-pVDZ	8.62	8.33	$\frac{18.66}{-112.2i}$	17.53	10.04	9.21	2.53 10-3			
MD2/(211+C(24f-a))	6.02	$E=4(v_i)$	-112.31 cm^{-1}	15 41	0.22	9.01	6 49 10-6			
$\frac{MP2/6-311++G(2d1,pd)}{MP2/aug as pVD7}$	0.93	7.39	10.10	15.41	9.25	6.02	$0.48 \cdot 10^{\circ}$			
NIP2/aug-cc-pvDZ	1.55	/./9 (h) 7 A D .T:	13.40 *(₩)→ 3 A D* •7	$\frac{14.72}{\Gamma(\mathbf{w})}$	8.13	0.95	1.04.10 °			
		(II) 2AI I	-1018 0; om-1							
$MP2/6_{-311++G}(2df pd)$	8 17	$\epsilon = 1 (v_i - 7.84)$	$-1018.0l \text{ cm}^{-1}$	0/8	-0.81	1.64	1 46.10-13			
MP2/aug-cc-nVDZ	7.83	7.50	7.30	9.48	-0.81	1.04	$1.40 \ 10^{-13}$			
	7.05	$\epsilon = 4 (v)$	$=1129 2i \text{ cm}^{-1}$		0.01	1.01	1.10 10			
MP2/6-311++G(2df,pd)	8.35	7.43	7.53	9.07	-0.82	1.64	1.29.10-13			
MP2/aug-cc-pVDZ	7.90	6.98	7.10	8.64	-0.80	1.66	1.33.10-13			
		(i) $A \cdot T(W)$	/C)↔A·T* _↓ (w	v)						
		ε=1 (ν	=99.7i cm ⁻¹)							
MP2/6-311++G(2df,pd)	12.47	14.23	20.82	20.95	8.35	6.73	1.47.10-6			
MP2/aug-cc-pVDZ	13.08	14.84	20.28	20.41	7.20	5.57	2.09.10-7			
	10.01	$\epsilon = 4 (v_i)$	$=79.4i \text{ cm}^{-1}$	14.94						
$\frac{MP2/6-311++G(2df,pd)}{MP2/}$	10.01	11.79	16.48	16.86	6.47	5.07	$6.13 \cdot 10^{-8}$			
MIP2/aug-cc-pVDZ	10.69	12.47	16.03	16.42	5.54	3.94	9.20.10-9			
See definitions in Table S2.										

Table S4. Energetic and kinetic characteristics of the (a) $A^{*}\cdot 2AP(WC) \leftrightarrow A^{*}\cdot 2AP_{syn}$, (b) $A^{*}\cdot A(WC) \leftrightarrow A^{*}\cdot A_{syn}(TF)$, (c) $G^{*}\cdot 2AP(W) \leftrightarrow G \cdot 2AP(WC)$, (d) $G \cdot 2AP(WC) \leftrightarrow G \cdot 2AP_{syn}$, (e) $G^{*}\cdot A(W) \leftrightarrow G \cdot A(WC)$ and (f) $G \cdot A(WC) \leftrightarrow G \cdot A_{syn}$ tautomerisations *via* the sequential DPT and conformational transitions obtained at the different levels of theory for the geometry calculated at the B3LYP/6-311++G(d,p) level of theory in the continuum with $\varepsilon = 1/\varepsilon = 4$.

Level of theory	ΔG	ΔΕ	$\Delta\Delta G_{TS}$	$\Delta\Delta E_{TS}$	ΔΔG	ΔΔΕ	τ _{99.9%}		
	(a) A	A*·2AP(WC)	↔A*·2AP _{syn}	1	1	1			
$\epsilon = 1 (v_i = 18.0i \text{ cm}^{-1})$									
MP2/6-311++G(2df,pd)	-0.94	-0.70	5.59	7.60	6.53	8.30	1.17.10-8		
MP2/aug-cc-pVDZ	-0.83	-0.59	6.54	8.55	7.37	9.14	5.59.10-8		
$\epsilon = 4 (v_i = 6.4i \text{ cm}^{-1})$									
MP2/6-311++G(2df,pd)	-0.62	-0.19	4.02	6.34	4.64	6.53	7.34.10-10		
MP2/aug-cc-pVDZ	-0.49	-0.07	5.13	7.45	5.62	7.52	4.49.10-9		
(b) A*·A(WC)↔A*·A _{syn} (TF)									
$\epsilon = 1 (v_i = 15.8i \text{ cm}^{-1})$									
MP2/6-311++G(2df,pd)	0.54	1.22	7.50	7.50	6.96	6.29	1.01.10-7		
MP2/aug-cc-pVDZ	0.56	1.23	8.09	8.09	7.53	6.85	2.66.10-7		
$\epsilon = 4 (v_i = 8.1 i \text{ cm}^{-1})$									
MP2/6-311++G(2df,pd)	0.40	0.35	4.78	6.90	4.38	6.55	1.20.10-9		
MP2/aug-cc-pVDZ	0.44	0.38	5.68	7.80	5.25	7.42	5.32.10-9		
	(c) (G*·2AP(w)↔	G·2AP(WC)						
$\epsilon = 1 (v_i = 130.1i \text{ cm}^{-1})$									
MP2/6-311++G(2df,pd)	2.06	1.80	19.64	18.19	17.58	16.38	8.29		
MP2/aug-cc-pVDZ	1.33	1.07	18.04	16.58	16.70	15.51	1.77		
		$\epsilon = 4 (v_i = 104)$	$6i \text{ cm}^{-1}$				•		
MP2/6-311++G(2df,pd)	-0.47	-0.36	13.74	13.05	14.21	13.41	9.07.10-3		
MP2/aug-cc-pVDZ	-1.20	-1.09	12.30	11.61	13.50	12.71	1.03.10-3		
	(d)	$G \cdot 2AP(WC)$	$\leftrightarrow \mathbf{G} \cdot \mathbf{2AP}_{syn}$						
	1	$\epsilon = 1 (v_i = 17.7)$	$7i \text{ cm}^{-1}$)				1		
MP2/6-311++G(2df,pd)	0.27	1.18	7.23	9.31	6.96	8.13	8.70.10-8		
MP2/aug-cc-pVDZ	0.60	1.51	8.23	10.31	7.63	8.80	3.22.10-7		
		$\epsilon = 4 (v_i = 6.4)$	$i \mathrm{cm}^{-1}$)	1	1	1	1		
MP2/6-311++G(2df,pd)	1.48	1.17	5.93	8.16	4.45	6.99	1.89.10-9		
MP2/aug-cc-pVDZ	1.64	1.33	7.26	9.49	5.62	8.16	1.39.10-8		
	(e	$\mathbf{E}) \mathbf{G}^{\ast} \cdot \mathbf{A}(\mathbf{w}) \leftrightarrow$	G·A(WC)						
		$\epsilon = 1 (v_i = 107.$	$2i \text{ cm}^{-1}$)	1	1	1	-		
MP2/6-311++G(2df,pd)	-3.27	-5.70	13.60	11.24	16.88	16.94	9.71.10-3		
MP2/aug-cc-pVDZ	-4.30	-6.73	12.33	9.97	16.64	16.70	$1.22 \cdot 10^{-3}$		
		$\epsilon = 4 (v_i = 84.5)$	$5i \text{ cm}^{-1}$		1 1 2 7 1	1000			
MP2/6-311++G(2df,pd)	-4.00	-6.03	9.51	7.17	13.51	13.20	$1.04 \cdot 10^{-5}$		
MP2/aug-cc-pVDZ	-4.87	-6.90	8.42	6.08	13.29	12.98	1.65.10-0		
	($\underbrace{I}_{\alpha=1} \underbrace{G^{\alpha}A(WC)}_{\alpha=1}$	$\leftrightarrow \mathbf{G} \cdot \mathbf{A}_{\text{syn}}$						
MD2/6 211 + C(24f - 3)	0.72	$\varepsilon = 1 (V_i = 20.7)$	7 cm^{1}	0.20	7.07	775	1 22 10-7		
$\frac{WP2/0-311++U(2dI,pd)}{WP2/04g \approx \pi VD7}$	0.75	0.55	/.80	0.29	7.07	0.13	$1.32 \cdot 10^{-7}$		
wir2/aug-cc-pvDZ	0.76	0.38	<u>8.39</u>	0.89	/.04	0.31	3.4/10-		
$MD2/6 211 \pm C(2dfnd)$	0.26	$\frac{\epsilon - 4}{0.06}$	+ <i>i</i> cm ⁺)	7 1 2	6 20	7 20	2 81.10-8		
$\frac{10172/0-5117+0(201,pd)}{MP2/000, cc, pVD7}$	0.20	-0.00	0.33	7.00	7 11	8.01	2.01.10.3		
IVIP2/aug-cc-pvDZ	0.30	-0.02	/.41	/.99	/.11	8.01	1.14.10		

See definitions in Table S2.

References

1. Espinosa, E., Molins, E., & Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. *Chem. Phys. Lett.*, 1998, **285**, 170–173.

2. Mata, I., Alkorta, I., Espinosa, E., & Molins, E. Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. *Chem. Phys. Lett.*, 2011, **507**, 185–189.

3. Iogansen, A.V. Direct proportionality of the hydrogen bonding energy and the intensification of the stretching v(XH) vibration in infrared spectra. *Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.*, 1999, **55**, 1585–1612.