## Supplementary information for

## C<sub>54</sub>Si<sub>6</sub> heterofullerene as potential gas sensors for CO, NO, and HCN

## detection

Yongliang Yong,<sup>a,b,\*</sup> Shijie Lv,<sup>a</sup> Ruizhou Zhang,<sup>a</sup> Qingxiao Zhou,<sup>a</sup> Xiangying Su,<sup>a</sup>

Tongwei Li,<sup>a</sup> and Hongling Cui<sup>a</sup>

<sup>a</sup> College of Physics and Engineering, Henan University of Science and Technology, Luoyang

471003, China

<sup>b</sup> Department of Physics, Zhejiang University, Hangzhou 310027, China

<sup>\*</sup> Corresponding author. Tel.: +86-187-36385204.

Electronic mail: <u>ylyong@haust.edu.cn</u> (Y. Yong).

1. The configurations, adsorption energies and adsorption distances of the CO, NO, and HCN molecules adsorbed on  $C_{54}Si_6$  heterofullerene with considering van der Waals interaction.



Fig. S1. The most stable configurations of  $C_{54}Si_6$  heterofullerene with the gas molecule adsorption: (A) CO, (B) NO, (C) HCN adsorbed on the isomer-1 of  $C_{54}Si_6$ , (D) CO, (E) NO, (F) HCN adsorbed on the isomer-2 of  $C_{54}Si_6$ . Values in parentheses are adsorption energies in eV. Bond distances are in angstrom. These results are obtained by using the dispersion-corrected DFT (DFT-D) based on Tkatchenko– Scheffler methods.