Isolation of lingzhifuran A and lingzhilactones D-F from Ganoderma

lucidum as specific Smad3 phosphorylation inhibitors and total

synthesis of lingzhifuran A

Wei-Yi Ding,^{ab1} Jun Ai,^{c1} Xin-Long Wang,^{a1} Fayang G. Qiu,^d Qing Lv,^a Ping Fang,^a Fan-Fan Hou,^{*c} Yong-Ming Yan^{*a} and Yong-Xian Cheng^{*a}

^{b.} University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, People's Republic of China

^dLaboratory of Molecular Engineering and Laboratory of Natural Product Synthesis, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China

* Corresponding authors. Tel./fax: +86-871-65223048; e-mail: yxcheng@mail.kib.ac.cn (Y.-X.C.); yanym@mail.kib.ac.cn (Y.-M.Y.); ffhouguangzhou@163.com (F.-F.H.)

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China

^cState Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China

Contents of Supplementary Information

I . The NMR, HREIMS, and UV spectra of natural lingzhifuran A (1).

Figure S1. The ¹H NMR spectrum (acetone- d_6 , 400 MHz) of 1. Figure S2. The ¹³C NMR spectrum (acetone- d_6 , 200 MHz) of 1. Figure S3. The DEPT spectra (acetone- d_6 , 200 MHz) of 1. Figure S4. The ¹H-¹H COSY spectrum (acetone- d_6 , 800 MHz) of 1. Figure S5. The HMQC spectrum (acetone- d_6 , 800 MHz) of 1. Figure S6. The HMBC spectrum (acetone- d_6 , 800 MHz) of 1. Figure S7. The ROESY spectrum (acetone- d_6 , 800 MHz) of 1. Figure S8. The enlarged ROESY spectrum (acetone- d_6 , 800 MHz) of 1. Figure S9. The HREI (positive) spectrum of 1. Figure S10. The UV spectrum (MeOH) of 1.

II. The NMR, HRESIMS and CD spectra of lingzhilactone D (2).

Figure S11. The ¹H NMR spectrum (acetone- d_6 , 600 MHz) of **2**. Figure S12. The DEPT spectra (acetone- d_6 , 150 MHz) of **2**. Figure S13. The ¹H-¹H COSY spectrum (acetone- d_6 , 600 MHz) of **2**. Figure S14. The HSQC spectrum (acetone- d_6 , 600 MHz) of **2**. Figure S15. The HMBC spectrum (acetone- d_6 , 600 MHz) of **2**. Figure S16. The ROESY spectrum (acetone- d_6 , 600 MHz) of **2**. Figure S17. The HRESIMS (negative) spectrum of **2**. Figure S18. The experiment CD spectrum (+)-(**2**). Figure S19. The experiment CD spectrum (-)-(**2**).

III. The NMR, HRESIMS and CD spectra of lingzhilactone E (3).

Figure S20. The ¹H NMR spectrum (acetone- d_6 , 600 MHz) of **3**. Figure S21. The DEPT spectra (acetone- d_6 , 150 MHz) of **3**. Figure S22. The ¹H-¹H COSY spectrum (acetone- d_6 , 600 MHz) of **3**. Figure S23. The HSQC spectrum (acetone- d_6 , 600 MHz) of **3**. Figure S24. The HMBC spectrum (acetone- d_6 , 600 MHz) of **3**. Figure S25. The ROESY spectrum (acetone- d_6 , 600 MHz) of **3**. Figure S26. The HRESIMS (negative) spectrum of **3**.

IV. The NMR, HRESIMS and CD spectra of lingzhilactone F (4).

Figure S27. The ¹H NMR spectrum (acetone- d_6 , 600 MHz) of **4**. Figure S28. The DEPT spectra (acetone- d_6 , 150 MHz) of **4**. Figure S29. The ¹H-¹H COSY spectrum (acetone- d_6 , 600 MHz) of **4**. Figure S30. The HSQC spectrum (acetone- d_6 , 600 MHz) of **4**. Figure S31. The HMBC spectrum (acetone- d_6 , 600 MHz) of **4**. Figure S32. The ROESY spectrum (acetone- d_6 , 600 MHz) of **4**. Figure S33. The HRESIMS (negative) spectrum of **4**.

V. The NMR spectra of synthetic intermediates 5-10.

Figure S34. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate **6**. Figure S35. The ¹³C NMR spectrum (CDCl₃, 100 MHz) of synthetic intermediate **7**. Figure S36. The ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of intermediate **7**. Figure S37. The ¹³C NMR spectrum (DMSO-*d*₆, 100 MHz) of intermediate **7**. Figure S38. The ¹H NMR spectrum (acetone-*d*₆, 400 MHz) of intermediate **8**. Figure S39. The ¹³C NMR spectrum (acetone-*d*₆, 100 MHz) of intermediate **8**. Figure S40. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate **9**. Figure S41. The ¹³C NMR spectrum (CDCl₃, 100 MHz) of synthetic intermediate **9**. Figure S42. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate **5**. Figure S43. The ¹³C NMR spectrum (CDCl₃, 150 MHz) of synthetic intermediate **5**. Figure S44. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate **5**. Figure S44. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate **5**. Figure S45. The ¹³C NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate **5**.

VI. The NMR, HREIMS, and UV spectra of synthetic lingzhifuran A (1).

Figure S46. The ¹H NMR spectrum (acetone- d_6 , 400 MHz) of synthetic **1**. Figure S47. The ¹³C NMR spectrum (acetone- d_6 , 150 MHz) of synthetic **1**. Figure S48. The DEPT spectra (acetone- d_6 , 150 MHz) of synthetic **1**. Figure S49. The ¹H-¹H COSY spectrum (acetone- d_6 , 600 MHz) of synthetic **1**. Figure S50. The HSQC spectrum (acetone- d_6 , 600 MHz) of synthetic **1**. Figure S51. The HMBC spectrum (acetone- d_6 , 600 MHz) of synthetic **1**. Figure S52. The ROESY spectrum (acetone- d_6 , 600 MHz) of synthetic **1**. Figure S53. The enlarged ROESY spectrum (acetone- d_6 , 600 MHz) of synthetic **1**. Figure S54. The HRESIMS (negative) spectrum of synthetic **1**. Figure S55. The UV spectrum (MeOH) of synthetic **1**.

VII. Comparison of natural 1 and synthetic 1.

Table S1. ¹H and ¹³C NMR data of **1** in acetone- d_6 (δ in ppm, J in Hz). Figure S56. HPLC analysis of natural and synthetic of **1**.

VII. X-ray data of (-)-2.

I . The NMR, HREIMS, and UV spectra of natural lingzhifuran A (1).

Figure S1. The ¹H NMR spectrum (acetone- d_6 , 400 MHz) of **1**.

Figure S2. The 13 C NMR spectrum (acetone- d_6 , 200 MHz) of 1.

Figure S3. The DEPT spectra (acetone- d_6 , 200 MHz) of 1.

Figure S4. The ¹H-¹H COSY spectrum (acetone- d_6 , 800 MHz) of **1**.

Figure S5. The HMQC spectrum (acetone- d_6 , 800 MHz) of **1**.

Figure S6. The HMBC spectrum (acetone- d_6 , 800 MHz) of **1**.

Figure S7. The ROESY spectrum (acetone- d_6 , 800 MHz) of **1**.

Figure S8. The enlarged ROESY spectrum (acetone- d_6 , 800 MHz) of **1**.

Figure S9. The HREI (positive) spectrum of 1.

Figure S10. The UV spectrum (MeOH) of 1.

II. The NMR, HRESIMS and CD spectra of lingzhilactone D (2).

Figure S11. The ¹H NMR spectrum (acetone- d_6 , 600 MHz) of **2**.

Figure S12. The DEPT spectra (acetone- d_6 , 150 MHz) of **2**.

Figure S13. The ¹H-¹H COSY spectrum (acetone- d_6 , 600 MHz) of **2**.

Figure S14. The HSQC spectrum (acetone- d_6 , 600 MHz) of **2**.

Figure S15. The HMBC spectrum (acetone- d_6 , 600 MHz) of **2**.

Figure S16. The ROESY spectrum (acetone- d_6 , 600 MHz) of **2**.

Qualitative Analysis Report

User Spectra

---- End Of Report ----

Figure S17. HRESIMS (negative) spectrum of 2.

Figure S18. The experiment CD spectrum (+)-(2).

Figure S19. The experiment CD spectrum (-)-(2).

III. The NMR, HRESIMS and CD spectra of lingzhilactone E (3).

Figure S20. The ¹H NMR spectrum (acetone- d_6 , 600 MHz) of **3**.

Figure S21. The DEPT spectra (acetone- d_6 , 150 MHz) of **3**.

Figure S22. The ¹H-¹H COSY spectrum (acetone-*d*₆, 600 MHz) of **3**.

Figure S23. The HSQC spectrum (acetone- d_6 , 600 MHz) of **3**.

Figure S24. The HMBC spectrum (acetone- d_6 , 600 MHz) of **3**.

Figure S25. The ROESY spectrum (acetone- d_6 , 600 MHz) of **3**.

Qualitative Analysis Report

User Spectra

--- End Of Report ---

Figure S26. The HRESIMS (negative) spectrum of 3.

IV. The NMR, HRESIMS and CD spectra of lingzhilactone F (4).

Figure S27. The ¹H NMR spectrum (acetone- d_6 , 600 MHz) of 4.

Figure S28. The DEPT spectra (acetone- d_6 , 150 MHz) of 4.

Figure S29. The ¹H-¹H COSY spectrum (acetone-*d*₆, 600 MHz) of **4**.

Figure S30. The HSQC spectrum (acetone-*d*₆, 600 MHz) of **4**.

Figure S31. The HMBC spectrum (acetone- d_6 , 600 MHz) of **4**.

Figure S32. The ROESY spectrum (acetone-*d*₆, 600 MHz) of **4**.

Qualitative Analysis Report

Figure S33. The HRESIMS (negative) spectrum of 4.

Figure S34. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate 6.

Figure S35. The ¹³C NMR spectrum (CDCl₃, 100 MHz) of synthetic intermediate 6.

Figure S36. The ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of intermediate 7.

Figure S37. The 13 C NMR spectrum (DMSO- d_6 , 100 MHz) of intermediate 7.

Figure S38. The ¹H NMR spectrum (acetone- d_6 , 400 MHz) of intermediate 8.

Figure S39. The ¹³C NMR spectrum (acetone- d_6 , 100 MHz) of intermediate 8.

Figure S40. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate 9.

Figure S41. The ¹³C NMR spectrum (CDCl₃, 100 MHz) of synthetic intermediate 9.

Figure S42. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate 5.

Figure S43. The ¹³C NMR spectrum (CDCl₃, 150 MHz) of synthetic intermediate 5.

Figure S44. The ¹H NMR spectrum (CDCl₃, 400 MHz) of synthetic intermediate **10**.

Figure S45. The ¹³C NMR spectrum (CDCl₃, 100 MHz) of synthetic intermediate 10.

VI. The NMR, HREIMS, and UV spectra of synthetic lingzhifuran A(1).

Figure S46. The ¹H NMR spectrum (acetone- d_6 , 400 MHz) of synthetic 1.

Figure S47. The ¹³C NMR spectrum (acetone- d_6 , 150 MHz) of synthetic 1.

Figure S48. The DEPT spectra (acetone- d_6 , 150 MHz) of synthetic 1.

Figure S49. The ¹H-¹H COSY spectrum (acetone- d_6 , 600 MHz) of synthetic **1**.

Figure S50. The HSQC spectrum (acetone- d_6 , 600 MHz) of synthetic 1.

Figure S51. The HMBC spectrum (acetone- d_6 , 600 MHz) of synthetic 1.

Figure S52. The ROESY spectrum (acetone- d_6 , 600 MHz) of synthetic 1.

Figure S53. The enlarged ROESY spectrum (acetone- d_6 , 600 MHz) of synthetic 1.

Qualitative Analysis Report

Data Filena Sample Ty Instrumen Acq Metho IRM Calibr Comment	ame pe t Name d ation S	e Status		150807ES Sample Agilent Gé ESIN.m Success	51NA10.d 5230 TOF M	Sa Po SUs Ac DJ	ample l osition ser Nar quirec A Meth	Name ne I Time od	qlz-22 KIB 8/7/2015 3:53 ESI.m	3:52 PM	
Sample Gr Acquisitior Version	oup 1 SW	6	5200 serie 2-TOF B.	es TOF/650 05.01 (B51	1 00 series .25.2)	Info.					
User Spe	ectra	oltage		Collision E	nerov	Ionizatik	on Mode	<u>.</u>			
	200	nuge		0		E	51	-			
×10 ⁴ ^{- \$} 1.75- 1.5- 1.25- 1-	ican (2	.025 m	in) 1508	307ESINA	10.d	277.087	2				
0.75- 0.5-											
0.25-											
Peak List	277.083	705	27	7.0871	277. Counts vs	08715 . Mass-to-C	27: harge	7.0872 (m/z)	277.087	/25	
112 9856	+-	22250	12	Formula							
154,9733	+	1103.8	86								
277.0872	1	16477	.71	C18 H13 0	03	M-					
278.0904	1	1478.0	03	C18 H13	03	M-					
313.0634	1	3722.9	93								
555.1803	1	892.39	9								
1033.9881	1	42752	.42								
1034.9894	1	4595.7	79								
1933.9295	1	6599.8	31								
1934.9323		11130.7	/ nent Liv	nits							
Element	Min		Мах]							
С		0	200]							
Н		0	400	4							
0		0	6	I.							
Formula Ca	aculati	TCalcu	uits ilatedM:	ass	Calculate	dMz	Mz		Diff. (mDa)	Diff. (ppm) IDBE
C18 H13 O3		1		277.0865		277.087	70	277.0872	2	-0.1	-0.5 12
End Of R	eport										

Figure S54. The HRESIMS (negative) spectrum of synthetic 1.

_

Figure S55. The UV spectrum (MeOH) of synthetic 1.

	1 (natural)			1 (synthetic)		
No.	${\delta_{\mathrm{H}}}^{\mathrm{a}}$	$\delta_{ m C}{}^{ m b}$	No.	$\delta_{ m H}{}^{ m c}$	$\delta_{ m C}{}^{ m d}$	
1		154.9 s	1		154.8 s	
2	7.52 (d, 2.6)	106.9 d	2	7.52 (d, 2.6)	106.8 d	
3		125.2 s	3		125.2 s	
4		150.9 s	4		151.0 s	
5	7.57 (d, 8.8)	112.9 d	5	7.58 (d, 8.8)	112.9 d	
6	7.08 (dd,8.8, 2.6)	116.9 d	6	7.08 (dd, 8.8, 2.6)	116.8 d	
1′		126.0 s	1'		126.0 s	
2'		155.3 s	2'		155.3 s	
3'		122.3 s	3'		122.3 s	
4′	7.47 (d, 15.6)	135.7 d	4′	7.47 (d, 15.6)	135.7 d	
5'	7.92 (dd, 15.6,	127.7 d	5'	7.93 (dd, 15.6, 11.3)	127.7 d	
	11.4)					
6′	7.31 (d, 11.4)	149.3 d	6'	7.32 (d, 11.3)	149.3 d	
7′		139.0 s	7′		139.1 s	
8'	9.59 (s)	194.9 s	8'	9.59 (s)	194.9 d	
9′	1.99 (d, 1.2)	9.7 q	9′	2.00 (d, 1.2)	9.7 q	
10′	7.76 (d, 7.6)	127.6 d	10'	7.76 (d,7.6)	127.6 d	
11′	7.39 (dd, 7.7, 7.7)	123.9 d	11'	7.39 (dd, 7.6, 7.6)	123.9 d	
12′	8.01 (d, 7.7)	122.3 d	12'	8.02 (dd,7.6, 1.2)	122.3 d	
1-OH			1 - OH	8.46 (br)		

VII Comparison of natural 1 and synthetic 1.

Table S1. ¹H and ¹³C NMR data of **1** in acetone- d_6 (δ in ppm, J in Hz).

^a Recorded at 800 MHz; ^b Recorded at 200 MHz; ^c Recorded at 400 MHz; ^d Recorded at 150 MHz.

HPLC analysis were recorded on a Agilent 1200 spectrometer using Eclipse XDB-C18 column (5 μ m, 4.6 \times 150 mm). HPLC (65% aq. MeOH; flow rate: 1.0 mL/min; 25 °C; Detection: 365 nm)

(b) synthetic 1

Figure S56. HPLC chromatograms of natural and synthetic of 1.

VII. X-ray data of (-)-2.

Crystal data for cu_qylz2b_0m: C₁₇H₁₆O₈, M = 348.30, monoclinic, a = 6.7105(3)Å, b = 7.8030(4) Å, c = 15.2397(9) Å, $a = 90.00^{\circ}$, $\beta = 102.694(2)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 778.48(7) Å³, T = 100(2) K, space group P21, Z = 2, μ (CuK α) = 1.020 mm⁻¹, 5682 reflections measured, 2079 independent reflections ($R_{int} = 0.0482$). The final R_I values were 0.1075 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.2890 ($I > 2\sigma(I)$). The final R_I values were 0.1080 (all data). The final $wR(F^2)$ values were 0.2892 (all data). The goodness of fit on F^2 was 1.212. Flack parameter = -0.2(8). The deposition number CCDC 1491784 for (-)-2 can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.

View of a molecule of qylz2b with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the hydrogen-bonded motif of qylz2b. Hydrogen-bonds are shown as dashed lines. Table 1. Crystal data and structure refinement for qylz2b.

Identification code	qylz2b
Empirical formula	C17 H16 O8
Formula weight	348.30
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system, space group	Monoclinic, P 21
Unit cell dimensions	a = 6.7105(3) A alpha = 90 deg. b = 7.8030(4) A beta = 102.694(2) deg. c = 15.2397(9) A gamma = 90 deg.
Volume	778.48(7) A^3
Z, Calculated density	2, 1.486 Mg/m^3
Absorption coefficient	1.020 mm^-1
F(000)	364

Crystal size	0.32 x 0.16 x 0.12 mm
Theta range for data collection	2.97 to 68.81 deg.
Limiting indices	-7<=h<=7, -7<=k<=9, -18<=l<=18
Reflections collected / unique	5682 / 2079 [R(int) = 0.0482]
Completeness to theta = 68.81	97.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8874 and 0.7361
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2079 / 7 / 228
Goodness-of-fit on F^2	1.212
Final R indices [I>2sigma(I)]	R1 = 0.1075, wR2 = 0.2890
R indices (all data)	R1 = 0.1080, wR2 = 0.2892
Absolute structure parameter	-0.2(8)
Largest diff. peak and hole	0.588 and -0.622 e.A^-3

Т	able 2.	Atomic coordinates (x 10^4) and equivalent isotropic
d	isplacem	nent parameters (A^2 x 10^3) for qylz2b.
U	l(eq) is d	efined as one third of the trace of the orthogonalized
U	lij tensor	2

	x	У	Z	U(eq)
O(9')	5006(10)	8089(10)	1892(5)	27(2)
O(4)	5291(10)	4260(15)	6418(4)	40(3)
O(1')	-672(11)	3946(11)	2877(5)	29(2)
O(11')	-860(10)	2304(10)	1127(4)	21(2)
O(6')	4460(10)	5879(10)	954(4)	19(2)
O(8')	345(10)	7526(9)	1098(4)	21(2)
O(10')	795(10)	410(9)	2117(5)	22(2)
O(1)	-2422(10)	4344(14)	4222(5)	37(2)
C(5)	1610(17)	4419(17)	6226(7)	31(3)
C(4)	3368(14)	4257(16)	5879(7)	25(2)
C(3)	3196(15)	4101(16)	4978(7)	25(2)
C(2)	1225(15)	4122(15)	4362(7)	25(2)
C(1')	1075(15)	3889(13)	3407(7)	23(2)
C(2')	2878(16)	3530(14)	3020(6)	24(2)
C(3')	2365(14)	3176(13)	2009(6)	16(2)
C(7')	1531(13)	4659(14)	1344(6)	17(2)
C(8')	1810(16)	6459(13)	1697(7)	20(2)
C(9')	3861(14)	6929(13)	1553(6)	20(2)
C(10')	734(15)	1816(13)	1797(6)	18(2)
C(11')	-719(14)	4143(14)	936(6)	20(2)
C(6')	2835(14)	4589(14)	636(6)	19(2)
C(5')	3855(14)	2828(14)	693(6)	20(2)
C(4')	4312(13)	2483(13)	1714(6)	16(2)
C(1)	-490(14)	4317(15)	4745(7)	25(2)
C(6)	-288(15)	4440(17)	5663(7)	28(3)

O(9')-C(9')	1.226(13)
O(4)-C(4)	1.369(11)
O(4)-H(4)	0.8400
O(1')-C(1')	1.270(12)
O(11')-C(10')	1.361(12)
O(11')-C(11')	1.471(13)
O(6')-C(9')	1.351(12)
O(6')-C(6')	1.485(11)
O(8')-C(8')	1.449(11)
O(8')-H(8')	0.8400
O(10')-C(10')	1.197(13)
O(1)-C(1)	1.365(12)
O(1)-H(1)	0.8400
C(5)-C(6)	1.370(15)
C(5)-C(4)	1.401(13)
C(5)-H(5)	0.9500
C(4)-C(3)	1.358(15)
C(3)-C(2)	1.444(13)
C(3)-H(3)	0.9500
C(2)-C(1)	1.408(13)
C(2)-C(1')	1.448(15)
C(1')-C(2')	1.485(14)
C(2')-C(3')	1.528(12)
C(2')-H(2'1)	0.9900
C(2')-H(2'2)	0.9900
C(3')-C(10')	1.508(13)
C(3')-C(7')	1.559(14)
C(3')-C(4')	1.568(12)
C(7')-C(8')	1.500(15)
C(7')-C(6')	1.532(12)
C(7')-C(11')	1.555(12)
C(8')-C(9')	1.486(14)
C(8')-H(8'1)	1.0000
C(11')-H(11A)	0.9900
C(11')-H(11B)	0.9900
C(6')-C(5')	1.529(15)
C(6')-H(6')	1.0000
C(5')-C(4')	1.543(13)
C(5')-H(5'1)	0.9900
C(5')-H(5'2)	0.9900

Table 3. Bond lengths [A] and angles [deg] for qylz2b.

C(4')-H(4'1)	0.9900
C(4')-H(4'2)	0.9900
C(1)-C(6)	1.379(15)
C(6)-H(6)	0.9500
С(4)-О(4)-Н(4)	109.5
C(10')-O(11')-C(11')	110.3(7)
C(9')-O(6')-C(6')	109.0(7)
C(8')-O(8')-H(8')	109.5
C(1)-O(1)-H(1)	109.5
C(6)-C(5)-C(4)	120.6(10)
C(6)-C(5)-H(5)	119.7
C(4)-C(5)-H(5)	119.7
C(3)-C(4)-O(4)	117.8(8)
C(3)-C(4)-C(5)	119.9(10)
O(4)-C(4)-C(5)	122.3(9)
C(4)-C(3)-C(2)	121.2(9)
C(4)-C(3)-H(3)	119.4
C(2)-C(3)-H(3)	119.4
C(1)-C(2)-C(3)	116.6(9)
C(1)-C(2)-C(1')	123.2(9)
C(3)-C(2)-C(1')	120.2(9)
O(1')-C(1')-C(2)	119.1(9)
O(1')-C(1')-C(2')	118.2(9)
C(2)-C(1')-C(2')	122.7(8)
C(1')-C(2')-C(3')	114.4(8)
C(1')-C(2')-H(2'1)	108.7
C(3')-C(2')-H(2'1)	108.7
C(1')-C(2')-H(2'2)	108.7
C(3')-C(2')-H(2'2)	108.7
H(2'1)-C(2')-H(2'2)	107.6
C(10')-C(3')-C(2')	109.6(8)
C(10')-C(3')-C(7')	104.1(8)
C(2')-C(3')-C(7')	119.3(9)
C(10')-C(3')-C(4')	107.9(8)
C(2')-C(3')-C(4')	109.5(8)
C(7')-C(3')-C(4')	105.9(7)
C(8')-C(7')-C(6')	103.9(8)
C(8')-C(7')-C(11')	114.8(8)
C(6')-C(7')-C(11')	111.3(8)
C(8')-C(7')-C(3')	117.6(8)
C(6')-C(7')-C(3')	104.6(7)
C(11')-C(7')-C(3')	104.3(7)
O(8')-C(8')-C(9')	106.7(8)

O(8')-C(8')-C(7')	107.4(8)
C(9')-C(8')-C(7')	103.0(8)
O(8')-C(8')-H(8'1)	113.0
C(9')-C(8')-H(8'1)	113.0
C(7')-C(8')-H(8'1)	113.0
O(9')-C(9')-O(6')	118.7(9)
O(9')-C(9')-C(8')	129.4(9)
O(6')-C(9')-C(8')	111.9(9)
O(10')-C(10')-O(11')	120.8(9)
O(10')-C(10')-C(3')	126.8(9)
O(11')-C(10')-C(3')	112.2(8)
O(11')-C(11')-C(7')	105.8(8)
O(11')-C(11')-H(11A)	110.6
C(7')-C(11')-H(11A)	110.6
O(11')-C(11')-H(11B)	110.6
C(7')-C(11')-H(11B)	110.6
H(11A)-C(11')-H(11B)	108.7
O(6')-C(6')-C(5')	107.6(7)
O(6')-C(6')-C(7')	103.8(7)
C(5')-C(6')-C(7')	108.1(8)
O(6')-C(6')-H(6')	112.3
C(5')-C(6')-H(6')	112.3
C(7')-C(6')-H(6')	112.3
C(6')-C(5')-C(4')	101.6(8)
C(6')-C(5')-H(5'1)	111.5
C(4')-C(5')-H(5'1)	111.5
C(6')-C(5')-H(5'2)	111.5
C(4')-C(5')-H(5'2)	111.5
H(5'1)-C(5')-H(5'2)	109.3
C(5')-C(4')-C(3')	103.6(7)
C(5')-C(4')-H(4'1)	111.0
C(3')-C(4')-H(4'1)	111.0
C(5')-C(4')-H(4'2)	111.0
C(3')-C(4')-H(4'2)	111.0
H(4'1)-C(4')-H(4'2)	109.0
O(1)-C(1)-C(6)	117.4(9)
O(1)-C(1)-C(2)	121.2(10)
C(6)-C(1)-C(2)	121.4(9)
C(5)-C(6)-C(1)	120.3(9)
C(5)-C(6)-H(6)	119.8
C(1)-C(6)-H(6)	119.8

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A² x 10³) for qylz2b. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33		U23	U13	U12
O(9')	16(3)	19(4)	44(4)	-5(3)	2(3)	0(3)	
O(4)	7(3)	93(8)	18(3)	-4(4)	-2(2)	5(4)	
O(1')	20(4)	40(5)	25(3)	-7(3)	-1(3)	0(4)	
O(11')	16(3)	17(4)	27(3)	0(3)	2(3)	-3(3)	
O(6')	12(3)	18(4)	27(3)	-2(3)	4(3)	-5(3)	
O(8')	16(3)	19(4)	24(3)	4(3)	-2(3)	4(3)	
O(10')	23(3)	13(4)	30(4)	0(3)	7(3)	-5(3)	
O(1)	10(3)	68(7)	30(4)	-8(5)	0(3)	6(4)	
C(5)	31(6)	31(7)	30(5)	-3(5)	7(4)	3(5)	
C(4)	7(4)	34(7)	34(5)	-3(5)	5(4)	-2(5)	
C(3)	17(5)	31(6)	24(5)	-5(5)	-4(4)	-1(5)	
C(2)	15(5)	23(6)	37(5)	-4(5)	3(4)	-1(5)	
C(1')	15(4)	16(6)	33(5)	4(4)	-5(4)	-8(4)	
C(2')	25(5)	22(6)	21(5)	-3(4)	-5(4)	-3(4)	
C(3')	14(4)	16(5)	20(4)	-1(4)	6(3)	-1(4)	
C(7')	9(4)	15(5)	26(5)	6(4)	4(3)	0(4)	
C(8')	21(5)	14(5)	22(5)	4(4)	0(4)	7(4)	
C(9')	14(5)	21(6)	24(5)	4(4)	1(4)	11(4)	
C(10')	15(5)	20(6)	23(5)	-6(4)	11(4)	-2(4)	
C(11')	21(5)	12(5)	26(5)	6(4)	3(4)	1(4)	
C(6')	18(2)	18(3)	20(2)	0(2)	1(2)	-2(2)	
C(5')	13(4)	22(6)	26(5)	-4(4)	6(4)	-2(4)	
C(4')	9(4)	16(5)	22(4)	-6(4)	2(3)	1(4)	
C(1)	12(4)	18(6)	46(6)	3(5)	6(4)	0(4)	
C(6)	13(4)	37(7)	37(6)	-7(5)	7(4)	-4(5)	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (A² $x \ 10^3$) for qylz2b.

	x	У	Z	U(eq)
	5246	2007	6026	60
H(4)	5246	3867	6926	60
H(8')	-839	7293	1159	31
H(1)	-2365	4403	3678	55
H(5)	1734	4514	6857	37
H(3)	4394	3975	4748	31
H(2'1)	3611	2525	3332	29
H(2'2)	3817	4523	3139	29
H(8'1)	1709	6555	2340	24
H(11A)	-1669	4809	1217	24
H(11B)	-1063	4354	279	24
H(6')	2023	4848	18	23
H(5'1)	5125	2863	463	24
H(5'2)	2922	1954	355	24
H(4'1)	5552	3103	2026	19
H(4'2)	4501	1242	1843	19
H(6)	-1471	4540	5907	34

Table 6. Torsion angles [deg] for qylz2b.

C(6)-C(5)-C(4)-C(3)	-1(2)
C(6)-C(5)-C(4)-O(4)	178.9(12)
O(4)-C(4)-C(3)-C(2)	-178.7(12)
C(5)-C(4)-C(3)-C(2)	0.9(19)
C(4)-C(3)-C(2)-C(1)	0.2(18)
C(4)-C(3)-C(2)-C(1')	-177.7(11)
C(1)-C(2)-C(1')-O(1')	3.6(17)
C(3)-C(2)-C(1')-O(1')	-178.7(11)
C(1)-C(2)-C(1')-C(2')	-174.4(11)
C(3)-C(2)-C(1')-C(2')	3.3(16)
O(1')-C(1')-C(2')-C(3')	-3.0(14)
C(2)-C(1')-C(2')-C(3')	175.0(10)
C(1')-C(2')-C(3')-C(10')	-51.3(12)
C(1')-C(2')-C(3')-C(7')	68.4(12)
C(1')-C(2')-C(3')-C(4')	-169.5(9)
C(10')-C(3')-C(7')-C(8')	139.2(8)
C(2')-C(3')-C(7')-C(8')	16.7(12)
C(4')-C(3')-C(7')-C(8')	-107.2(9)
C(10')-C(3')-C(7')-C(6')	-106.3(8)
C(2')-C(3')-C(7')-C(6')	131.2(9)
C(4')-C(3')-C(7')-C(6')	7.3(10)
C(10')-C(3')-C(7')-C(11')	10.7(9)
C(2')-C(3')-C(7')-C(11')	-111.8(9)
C(4')-C(3')-C(7')-C(11')	124.3(8)
C(6')-C(7')-C(8')-O(8')	85.0(9)
C(11')-C(7')-C(8')-O(8')	-36.8(10)
C(3')-C(7')-C(8')-O(8')	-160.1(7)
C(6')-C(7')-C(8')-C(9')	-27.4(9)
C(11')-C(7')-C(8')-C(9')	-149.2(8)
C(3')-C(7')-C(8')-C(9')	87.5(9)
C(6')-O(6')-C(9')-O(9')	-179.9(8)
C(6')-O(6')-C(9')-C(8')	0.1(10)
O(8')-C(8')-C(9')-O(9')	84.9(13)
C(7')-C(8')-C(9')-O(9')	-162.2(10)
O(8')-C(8')-C(9')-O(6')	-95.0(9)
C(7')-C(8')-C(9')-O(6')	17.9(10)
C(11')-O(11')-C(10')-O(10')	172.4(8)
C(11')-O(11')-C(10')-C(3')	-11.7(10)
C(2')-C(3')-C(10')-O(10')	-55.7(12)
C(7')-C(3')-C(10')-O(10')	175.6(9)
C(4')-C(3')-C(10')-O(10')	63.5(12)

C(2')-C(3')-C(10')-O(11')	128 7(8)
C(2) - C(3) - C(10) - O(11)	0.0(10)
C(1) - C(3) - C(10) - O(11)	0.0(10)
C(4) - C(3) - C(10) - O(11)	-112.1(8)
C(10) - O(11) - C(11) - C(7)	18.3(9)
$C(8^{\circ}) - C(7^{\circ}) - C(11^{\circ}) - O(11^{\circ})$	-147.4(8)
C(6')-C(7')-C(11')-O(11')	94.9(9)
C(3')-C(7')-C(11')-O(11')	-17.3(9)
C(9')-O(6')-C(6')-C(5')	-132.1(8)
C(9')-O(6')-C(6')-C(7')	-17.7(10)
C(8')-C(7')-C(6')-O(6')	27.9(9)
C(11')-C(7')-C(6')-O(6')	152.0(8)
C(3')-C(7')-C(6')-O(6')	-96.0(8)
C(8')-C(7')-C(6')-C(5')	142.0(8)
C(11')-C(7')-C(6')-C(5')	-93.9(9)
C(3')-C(7')-C(6')-C(5')	18.1(10)
O(6')-C(6')-C(5')-C(4')	75.1(8)
C(7')-C(6')-C(5')-C(4')	-36.4(9)
C(6')-C(5')-C(4')-C(3')	39.7(9)
C(10')-C(3')-C(4')-C(5')	81.3(9)
C(2')-C(3')-C(4')-C(5')	-159.4(8)
C(7')-C(3')-C(4')-C(5')	-29.6(10)
C(3)-C(2)-C(1)-O(1)	-179.6(11)
C(1')-C(2)-C(1)-O(1)	-1.8(17)
C(3)-C(2)-C(1)-C(6)	-1.5(17)
C(1')-C(2)-C(1)-C(6)	176.3(11)
C(4)-C(5)-C(6)-C(1)	-1(2)
O(1)-C(1)-C(6)-C(5)	179.9(12)
C(2)-C(1)-C(6)-C(5)	1.7(19)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for qylz2b [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(4)-H(4)O(9')#1	0.84	1.94	2.780(11)	175.8
O(1)-H(1)O(1')	0.84	1.88	2.596(10)	143.0

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z+1