Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

RSC Advances

Electronic Supplementary Information (ESI) for RSC Advances

A feasible approach to dispose of soil washing wastes: Adsorptive removal of chlorobenzene compounds in aqueous solutions using humic acid modified with monoolein (HA-M)[†]

Yueyue Shen,^a‡ Shilin Zhao,^{ab*}‡ Yue Li,^a Qian Liu,^a Chongdi Ma,^a Hui Mao,^{ab} Yang Liao,^{ab*} and

Jun Ma^{ab*}

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P.R. China

^b The Engineering Center for the Development of Farmland Ecosystem Service Function, Sichuan Normal University, Chengdu, Sichuan 610068, P.R. China

Number of pages: 17 Number of figures: 9 Number of tables: 7

*Corresponding author: Shilin Zhao (S. Zhao), e-mail: zhaoslin@aliyun.com
*Corresponding author: Yang Liao (Y. Liao), e-mail: liaoyang315_sicnu@163.com
*Corresponding author: Jun Ma (J. Ma), e-mail: hxxysyzx@qq.com
‡ Y. S. (yshen028@126.com) and S. Z. (zhaoslin@aliyun.com) contributed equally.

Figure captions

Fig. S1. Chemical structure of monoolein.

Fig. S2. Characterization results of the samples. (a) SEM of HA; (b) SEM of HA-M; (c) X-ray diffraction patterns of HA and HA-M; (d) TG of HA-M. (XRD analysis with *Cu Ka* radiation, Smart Lab; SEM, FEI-Quanta 250; TG, Heating rate of 10.00 $^{\circ}$ C/min, Q500, American TQ company, air atmosphere).

Fig. S3. The effect of initial pH on the adsorption of HA-M to CBs. (50 mg/L of CBs, 12 h, 25 °C, 0.2 g HA-M)

Fig. S4. The pore distribution of HA-M.

Fig. S5. Adsorption kinetics of HA-M to CBs; (a) Pseudo-first-order model fitting, (b) Intraparticle diffusion model fitting.

Fig. S6. Adsorption isotherm plots for adsorption of CBs onto HA-M, Freundlich model.

Fig. S7. The effect of temperature on the adsorptive removal efficiency of HA-M to CBs.

Fig. S8. The adsorption conditions of HA-M to OCPs.

Fig. S9. Adsorption results of OCPs on HA-M. (a) Pseudo-first-order model fitting, (b) Intraparticle diffusion model fitting, (c) Adsorption efficiency of multi-compoent OCPs.

Table captions

 Table S1. Fitting parameters collected from different models.

Table S2. The Langmuir and Freundlich model parameters of the adsorption of CBson HA-M.

Table S3. The adsorption performances of other sorbents to CBs.

Table S4. Thermodynamic parameters for the adsorptive removal of CBs on HA-M.

Table S5. The effect of coexisting organic matters on the adsorption removal CBs onHA-M.

 Table S6. Fitting parameters collected from different models of OCPs adsorption

 removal.

Table S7. Physicochemical properties of CBs and OCPs.

Fig. S1. Chemical structure of monoolein.

Fig. S2. Characterization results of the samples. (a) SEM of HA; (b) SEM of HA-M; (c) X-ray diffraction patterns of HA and HA-M; (d) TG of HA-M. (XRD analysis with *Cu Ka* radiation, Smart Lab; SEM, FEI-Quanta 250; TG, Heating rate of 10.00 $^{\circ}$ C/min, Q500, American TQ company, air atmosphere).

Fig. S3. The effect of initial pH on the adsorption of HA-M to CBs.

(50 mg/L of CBs, 12 h, 25 $^{\rm o}\text{C},$ 0.2 g HA-M)

Fig. S4. The pore distribution of HA-M.

Fig. S5. Adsorption kinetics of HA-M to CBs; (a) Pseudo-first-order model fitting, (b) Intraparticle diffusion model fitting.

ROYAL SOCIETY OF CHEMISTRY

Fig. S6. Adsorption isotherm plots for adsorption of CBs onto HA-M, Freundlich model.

Fig. S7. The effect of temperature on the adsorptive removal efficiency of HA-M to CBs.

Fig. S8. The adsorption conditions of HA-M to OCPs.

Fig. S9. Adsorption results of OCPs on HA-M. (a) Pseudo-first-order model fitting, (b) Intraparticle diffusion model fitting, (c) Adsorption efficiency of multi-compoent OCPs.

RSC Advances

Table S1.

Fitting parameters collected from different models.

		Pseudo	o-first-ord	ler rate n	rate model Pseudo-second-order rate model Intra					Intraparticle d	iffusion
Adsorbates	Qe(exp)	K ₁	Qe(cal)	E	D ²	K ₂	Qe(cal)	E	D ²	K ₃	D ²
	mg/g	h ⁻¹	mg/g	Error	к	g/(mg·h)	mg/g	Error	ĸ	$\mathbf{g}/(\mathbf{mg}/\mathbf{g}\cdot\mathbf{h}^{-0.5})$	ĸ
СВ	23.427	1.645	22.374	4.706	0.978	0.094	24.191	-3.158	0.983	15.371	0.829
1,2-DCB	23.582	1.428	22.276	5.863	0.976	0.079	24.278	-2.866	0.984	14.630	0.858
1,2,3-TCB	23.499	1.469	22.194	5.879	0.976	0.083	23.148	1.516	0.990	14.721	0.874
1,2,3,4-TeCB	23.571	1.745	22.786	3.445	0.974	0.103	24.479	-3.709	0.982	16.079	0.835
PeCB	23.769	1.948	22.826	4.131	0.954	0.118	24.401	-2.590	0.970	16.619	0.852
НСВ	23.882	1.813	23.088	3.439	0.960	0.106	24.768	-3.577	0.961	16.446	0.808

Error = $[Qe(exp)-Qe(cal)]/Qe(cal)*100; \mathbb{R}^2$, correlation coefficient.

Table S2.

The Langmuir and Freundlich model parameters of the adsorption of CBs on HA-M.

	Langmuir			Freundich		
Adsorbates	Q _{max} (mg/g)	$K_4(L \cdot mg^{-1})$	R_{1}^{2}	1/n	K ₅	${R_2}^2$
СВ	235.8491	0.0215	0.9798	0.5449	10.3947	0.9747
1,2-DCB	251.8892	0.0213	0.9804	0.5566	10.6031	0.9776
1,4-DCB	253.8071	0.0213	0.9789	0.5586	10.6169	0.9780
1,3-DCB	265.2512	0.0207	0.9742	0.5665	10.6635	0.9795
1,2,4-TCB	271.0027	0.0218	0.9655	0.5653	11.2533	0.9757
1,2,3-TCB	277.0083	0.0216	0.9607	0.5686	11.3399	0.9771
1,3,5-TCB	280.1120	0.0225	0.9615	0.5702	11.6450	0.9788
1,2,4,5-TeCB	284.0909	0.0226	0.9579	0.5699	11.8703	0.9838
1,2,3,4-TeCB	287.3563	0.0229	0.9533	0.5719	12.0313	0.9836
1,2,3,5-TeCB	290.6977	0.0229	0.9512	0.5738	12.1214	0.9837
PeCB	301.2048	0.0270	0.9509	0.5611	13.4374	0.9842
НСВ	306.7485	0.0287	0.9011	0.5788	13.7986	0.9875

Table S3.

The adsorption performances of other sorbents to CBs.

	Adsorption performance of other sorbents							
Adsorbates	Sorbent	Adsorption capacity (mg/g)	Temp. (°C)	Time (h)	Medium	Ref.		
НСВ	HA-M	23.882	25	12	deionized water(methanol as cosolvent)	This work		
СВ	Marine Sediment	< 19	25	~6.6	deionized water	1		
1,2,4-TCB	Graphene oxide	< 3	23±1	24	deionized water	2		
1,2,4,5-TeCB	Carbon Nanotube	~12	Room temperature	3	deionized water(methanol as cosolvent)	3		
НСВ	Carbonaceous material	0.992	25	24	methanol	4		

RSC Advances

Table S4.

Thermodynamic parameters for the adsorptive removal of CBs on HA-M.

Sorbates	T (K)	∆G ^O (KJ/mol)	∆H ^O (KJ/mol)	∆S ^O (J/K•mol)	Log K _d
	288	-2.052			0.857
CD	298	-2.122	(2.21	0.675	0.856
СВ	308 -2.190 318 -2.210	62.21	0.675	0.855	
	318	-2.210			0.853
	288	-2.071			0.865
1.2 DCD	298	-2.138	(1.99	0.652	0.863
1,2-DCB	308	-2.205	01.88	0.055	0.861
	318	-2.227			0.842
	288	-2.126			0.888
1.0.2 TCD	298	-2.194	(2.21	0.675	0.885
1,2,3-ICB	308	-2.265	02.21	0.675	0.884
	318	-2.287			0.865
	288	-2.183			0.912
1 2 2 4 T-CD	298	-2.253	(7.01	0.682	0.909
1,2,3,4-1eCB	308	-2.235	67.21	0.682	0.908
	318	-2.343			0.887
	288	-2.349			0.981
D-CD	298	-2.424	80.26	0.704	0.978
Pecb	308	-2.502	80.30	0.706	0.977
	318	-2.516			0.951
	288	-2.453			1.024
UCD	298	-2.526	04.75	0.724	1.019
нсв	308	-2.608	84./3	0.734	1.018
	318	-2.627			0.994

Table S5.

The effect of coexisting organic matters on the adsorption removal CBs on HA-M.

CBs	Coexisting organic matters							
(Removal efficiency)	Benzene	Trichloroethylene	Blank					
1,3,5-TCB (%)	95.86 ^a ; 91.00 ^b	95.63 ^a	94.29					
^a Conceraction of coexisting organic ma ^b Conceraction of coexisting organic ma Conditions: Temp., 25 °C; Time, 12 h; 1	tters, 0.5 g/L; tters, 1.0 g/L; ,3,5-TCB, 10 mg/L.							

Table S6.

Fitting parameters collected from different models of OCPs adsorption removal.

		Pseudo	o-first-ord	er rate mo	odel	Pseudo-se	econd-ord	er rate m	odel	Intraparticle d	iffusion
Adsorbates	Qe(exp)	K ₁	Qe(cal)	- -	D ²	K ₂	Qe(cal)	E	D ²	K ₃	D ²
	μg/g	h ⁻¹	μg/g	FLLOL	ĸ	g/(µg·h)	μg/g	Error	ĸ	$g/(\mu g/g{\cdot}h^{\text{-0.5}})$	K
α-HCH	9.681	2.477	9.073	6.701	0.939	0.461	9.831	-1.526	0.999	7.130	0.819
Aldrin	9.791	1.620	8.970	9.153	0.940	0.243	10.12	-3.270	0.999	6.200	0.928
Dieldrin	9.632	1.286	8.858	8.738	0.944	0.202	10.05	-4.159	0.998	5.660	0.955
p,p'-DDT	9.842	1.753	9.094	8.225	0.929	0.283	10.16	-3.123	0.999	6.450	0.923
Error =[$Qe(ex)$	(cal)]/Qe(cal)	*100; R ² , c	orrelation	coefficient.						

Table S7.

Physicochemical properties of CBs and OCPs.

CBs &OCPs	CAS Registry number	Molar mass $(\mathbf{g} \cdot \mathbf{mol}^{-1})$	lgKow	Ref.	Molecular structure
СВ	108-90-7	112.56	2.84	5	CI
1,2-DCB	95-50-1	147.00	3.38	6	CI
1,4-DCB	106-46-7	147.00	3.38	6	CI
1,3-DCB	541-73-1	147.00	3.48	6	CI
1,2,4-TCB	120-82-1	181.45	3.98	6	CI
1,2,3-TCB	87-61-6	181.45	4.04	6	CI
1,3,5-TCB	108-70-3	181.45	4.02	6	CI

RSC Adva	nces				
1,2,4,5-TeCB	95-94-3	215.9	4.51	6	
1,2,3,4-TeCB	634-66-2	215.9	4.55	6	
1,2,3,5-TeCB	634-90-2	215.9	4.65	6	CI
РеСВ	608-93-5	250.3	5.03	6	
НСВ	118-74-1	284.8	5.47	6	
α-HCH	319-84-6	290.83	3.80~4.44	7	
Aldrin	309-00-2	364.9	5.31	8	
Dieldrin	60-57-1	380.91	4.30	9	

RSC Adva	nces				COYAL SOCIETY OF CHEMISTRY
p,p'-DDT	50-29-3	354.48	6.36	10	

RSC Advances

References of ESI.

- 1 X. K. Zhao, G. P. Yang, P. Wu, et al, J. colloid interf. Sci., 2001, 243(2): 273-279.
- 2 Z. Pei, L. Li, L. Sun, et al, Carbon, 2013, **51**: 156-163.
- 3 L. Ji, F. Liu, Z. Xu, et al, Environ. Sci. technol., 2009, 43(20): 7870-7876.
- 4 J. Fan, X. Ran, Y. Ren, et al, Langmuir, 2016, **32**(39): 9922-9929.
- 5 J. Sangster, J., J. Phys. Chem. Ref. Data, 1989, 18, 1111-1229.
- 6 IUPAC, 1985. International Union of Pure and Applied Chemistry Solubility Data Series, Vol. 20, Pergamon Press, Oxford.
- 7 D. Mackay, W. Y. Shiu and K. C. Ma, 1997. *Illustrated Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals, Pesticide Chemicals.* Lewis Publishers. Chelsea.
- 8 Y. P. Xu, Z. J. Wang, R. H. Ke and S. U. Khan, *Environ. Sci. Technol.*, 2005, **39**, 1152-1157.
- 9 Y. P. Lu and Z. J. Wang, *Water Res.*, 2003, **37**, 2419-2425.
- 10 S. W. Karickhoff, D. S. Brown and T. A. Scott, Water Res., 1979, 13, 241-24.