Electronic Supporting Information for

Synthesis, Crystal Structure and Hydrolysis of Novel Isomeric Cage (P-C/P-O)-Phosphoranes on the basis of 4,4,5,5-Tetramethyl-2-(2-oxo-1,2-diphenylethoxy)-1,3,2-dioxaphospholane and Hexafluoroacetone

Nadezhda R. Khasiyatullina, ${ }^{a}$ Vladimir F. Mironov,*a,b Dmitry B. Krivolapov, ${ }^{\text {a }}$ Ekaterina V. Mironova, ${ }^{\text {a,b }}$ Oleg I. Gnezdilov ${ }^{\text {c }}$

${ }^{a}$ A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russian Federation, mironov@iopc.ru
${ }^{\text {b }}$ Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russian Federation ${ }^{c}$ E.K. Zavoisky Kazan Physical-Technical Institute, Russian Academy of Sciences Sibirskiy tract 10/7, 420029 Kazan, Russian Federation, e-mail: goi@yandex.ru

Table of contents

Table of contents	S1
General information	S2
References	S3
X-Ray Data of Compounds $\mathbf{1 3}$	S4-S5
X-Ray Data of Compounds $\mathbf{1 4}$	S6-S7
X-Ray Data of Compounds 15	S8-S9
X-Ray Data of Compounds 16	S10-S12
X-Ray Data of Compounds $\mathbf{1 7}$	S13-S14
NMR spectra of phosphorane $\mathbf{1 4}$	S15-S28
NMR spectra of phosphoranes 13, 14 mixture	S29-S28
A comparison of NMR spectrum of phosphorane 14 and compounds 13, 14 mixture	S29-S32
NMR spectra of phosphorane $\mathbf{1 3}$ before ${ }^{13}$ C experiments	S33-S35
NMR spectra of phospholane $\mathbf{1 6}$	S46-S60
IR spectra of compounds $\mathbf{1 3 - 1 6}$	S61-S66

General information:

All the manipulations were performed in argon vessels. All the solvents were obtained anhydrous according tostandard methods. NMR experiments were carried out with Bruker spectrometer AVANCE-400 (400.1 MHz $\left({ }^{1} \mathrm{H}\right), 162.0 \mathrm{M}$ ц, $\left({ }^{31} \mathrm{P}\right)$, 100.6 MHz $\left.\left({ }^{13} \mathrm{C}\right)\right)$ or Bruker spectrometer AVANCE-600 ($600.0 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 242.9 \mathrm{M}$ ц, $\left({ }^{31} \mathrm{P}\right)$, $150.9 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$). Chemical shifts are reported in the $\delta(\mathrm{ppm})$ scale relative to the residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of CHCl_{3} or DMSO, or the external standard $-\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. IR spectra were measured with Bruker Vector-22 spectrometer as suspensions in nujol or KBr pellets. Melting points were measured with a Stuart digital SMP10 apparatus and uncorrected. Elemental analyses for C, H and N were performed using a EuroVector 2000 CHNS-3 analyzer, Italy.

The X-ray diffraction data were collected on a Bruker AXS Smart Apex II CCD diffractometer in the ω-scan modes using graphite monochromated $\mathrm{MoK}_{\alpha}(\lambda 0.71073 \AA$) radiation. The crystal data, data collection, and the refinement parameters are given in Table 1. Data were corrected for the absorption effect using SADABS program. ${ }^{1}$ The structure was solved by direct method and refined by the full matrix least-squares using SHELX ${ }^{2}$ and WinGX ${ }^{3}$ programs. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were inserted at calculated positions and refined as riding atoms except the hydrogen atoms of OH groups which were located from difference maps and refined isotropically. Data collection: images were indexed, integrated, and scaled using the APEX2 data reduction package. ${ }^{4}$ Figures were made, molecular structures and conformations were analyzed by PLATON. ${ }^{5}$ Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 1406191. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: $+44-$ (0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

References:

1. APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program, Version 7.31A, Bruker Advansed X-ray Solutions, BrukerAXS Inc., Madison, Wisconsin, USA, 2006.
2. G. M. Sheldrick. SADABS, Program for empirical X-ray absorption correction, BrukerNonis, 1990
3. G. M. Sheldrick, Acta Cryst. A 2008, 64, 112-122, DOI 10.1107/S0108767307043930.
4. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Cryst. 2008, 41, $466-470$, DOI 10.1107/S0021889807067908.

Table S1 - Bond Distances (Angstrom) for molecule 13: k51_fin P 21 R $=0.07$

Bond	d	Bond	d	Bond	d
$\mathrm{P}^{1}-\mathrm{O}^{1}$	$1.613(5)$	$\mathrm{O}^{3}-\mathrm{C}^{8}$	$1.483(10)$	$\mathrm{C}^{6}-\mathrm{C}^{25}$	$1.540(12)$
$\mathrm{P}^{1}-\mathrm{O}^{2}$	$1.619(5)$	$\mathrm{O}^{5}-\mathrm{C}^{4}$	$1.482(8)$	$\mathrm{C}^{6}-\mathrm{C}^{26}$	$1.516(11)$
$\mathrm{P}^{1}-\mathrm{O}^{3}$	$1.583(5)$	$\mathrm{O}^{5}-\mathrm{C}^{6}$	$1.422(9)$	$\mathrm{C}^{7}-\mathrm{C}^{8}$	$1.529(12)$
$\mathrm{P}^{1}-\mathrm{O}^{7}$	$1.711(5)$	$\mathrm{O}^{7}-\mathrm{C}^{4}$	$1.386(8)$	$\mathrm{C}^{7}-\mathrm{C}^{9}$	$1.533(14)$
$\mathrm{P}^{1}-\mathrm{C}^{6}$	$1.930(7)$	$\mathrm{C}^{3}-\mathrm{C}^{4}$	$1.549(10)$	$\mathrm{C}^{7}-\mathrm{C}^{10}$	$1.527(15)$
$\mathrm{O}^{1}-\mathrm{C}^{7}$	$1.475(9)$	$\mathrm{C}^{3}-\mathrm{C}^{13}$	$1.515(10)$	$\mathrm{C}^{8}-\mathrm{C}^{11}$	$1.525(12)$
$\mathrm{O}^{2}-\mathrm{C}^{3}$	$1.446(8)$	$\mathrm{C}^{4}-\mathrm{C}^{19}$	$1.503(10)$	$\mathrm{C}^{8}-\mathrm{C}^{12}$	$1.523(13)$

Table S2 - Bond Angles (Degrees) for molecule 13: k51_fin P $21 \mathrm{R}=0.07$

Bond angle	φ	Bond angle	φ	Bond angle	φ
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}$	$96.9(3)$	$\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{O}^{7}$	$105.2(5)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{C}^{6}$	$114.0(7)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$92.7(3)$	$\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{C}^{3}$	$108.2(5)$	$\mathrm{F}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	$106.1(7)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{7}$	$172.4(3)$	$\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$107.3(5)$	$\mathrm{F}^{5}-\mathrm{C}^{26}-\mathrm{C}^{6}$	$112.4(7)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{C}^{6}$	$92.8(3)$	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{3}$	$103.7(5)$	$\mathrm{F}^{6}-\mathrm{C}^{26}-\mathrm{C}^{6}$	$111.9(7)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$120.9(3)$	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$115.3(6)$	$\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{26}$	$105.6(6)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{7}$	$90.3(2)$	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$116.4(6)$	$\mathrm{C}^{25}-\mathrm{C}^{6}-\mathrm{C}^{26}$	$109.9(7)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{C}^{6}$	$100.7(3)$	$\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{O}^{5}$	$102.7(5)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	$102.3(6)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{7}$	$85.7(2)$	$\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{25}$	$113.4(5)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$107.7(7)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{C}^{6}$	$136.9(3)$	$\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{26}$	$115.9(5)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$106.3(7)$
$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{C}^{6}$	$83.3(3)$	$\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{25}$	$108.7(6)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$114.5(7)$
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	$113.3(4)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{2}$	$105.8(8)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$115.6(8)$
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	$113.2(4)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$106.2(9)$	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$109.7(8)$
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	$116.5(4)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{C}^{6}$	$111.8(8)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	$102.9(6)$
$\mathrm{C}^{4}-\mathrm{O}^{5}-\mathrm{C}^{6}$	$109.9(5)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$106.7(8)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$106.1(7)$
$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	$102.0(4)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{C}^{6}$	$112.1(7)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$105.4(7)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	$102.2(5)$	$\mathrm{F}^{3}-\mathrm{C}^{25}-\mathrm{C}^{6}$	$113.7(8)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$115.3(7)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$110.1(5)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{F}^{5}$	$105.4(7)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$115.7(8)$
$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$115.5(6)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{F}^{6}$	$106.5(7)$	$\mathrm{C}^{11}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$110.2(8)$

Table S3 - Torsion Angles (Degrees) for molecule 13: k51_fin P 21 R $=0.07$

Torsion angle	τ	Torsion angle	τ	Torsion angle	τ
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	98.6(5)	$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{26}$	62.0(6)	$\mathrm{C}^{4}-\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{25}$	110.5(6)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	-23.0(6)	$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{O}^{5}$	113.0(5)	$\mathrm{C}^{4}-\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{26}$	-131.6(6)
$\mathrm{C}^{6}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	-160.2(6)	$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{25}$	-4.1(8)	$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{O}^{5}$	59.5(5)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	154.3(4)	$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{26}$	-132.6(6)	$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{3}$	-54.1(5)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	-108.4(5)	$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{O}^{5}$	36.6(4)	$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}$	177.5(5)
$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	-23.1(4)	$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{25}$	-80.5(6)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{5}$	-73.5(6)
$\mathrm{C}^{6}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	60.1(5)	$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{26}$	151.0(6)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{7}$	37.9(6)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	0.6(5)	$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	36.4(8)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	165.6(6)
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	-99.1(5)	$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	-84.6(7)	$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{5}$	167.0(5)
$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	173.1(5)	$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	158.0(6)	$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{7}$	-81.6(7)
$\mathrm{C}^{6}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	97.7(6)	$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	-4.2(6)	$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	46.2(8)
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	46.1(4)	$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	119.0(5)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	-43.2(9)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	167.1(4)	$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	19.7(8)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	137.0(7)
$\mathrm{C}^{6}-\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	-54.7(4)	$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	141.2(6)	$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	71.9(9)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{O}^{5}$	-150.1(4)	$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	-101.9(8)	$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	-108.0(8)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{25}$	92.9(6)	$\mathrm{C}^{6}-\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{O}^{7}$	-29.4(7)	$\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	117.8(8)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{C}^{26}$	-35.6(6)	$\mathrm{C}^{6}-\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{C}^{3}$	81.0(6)	$\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	-64.4(8)
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{C}^{6}-\mathrm{O}^{5}$	-52.5(5)	$\mathrm{C}^{6}-\mathrm{O}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}$	-152.7(6)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	1(1)

Table S4 - Bond Distances (Angstrom) for molecule 14: k53n_fin1 P b c a R $=0.05$

Bond	d	Bond	d	Bond	d
$\mathrm{P}^{1}-\mathrm{O}^{1}$	$1.625(2)$	$\mathrm{O}^{3}-\mathrm{C}^{8}$	$1.464(4)$	$\mathrm{C}^{8}-\mathrm{C}^{12}$	$1.544(7)$
$\mathrm{P}^{1}-\mathrm{O}^{2}$	$1.606(2)$	$\mathrm{O}^{6}-\mathrm{C}^{5}$	$1.421(4)$	$\mathrm{C}^{13}-\mathrm{C}^{14}$	$1.380(5)$
$\mathrm{P}^{1}-\mathrm{O}^{3}$	$1.582(2)$	$\mathrm{O}^{7}-\mathrm{C}^{4}$	$1.411(3)$	$\mathrm{C}^{13}-\mathrm{C}^{18}$	$1.382(5)$
$\mathrm{P}^{1}-\mathrm{O}^{6}$	$1.647(2)$	$\mathrm{C}^{3}-\mathrm{C}^{4}$	$1.571(4)$	$\mathrm{C}^{14}-\mathrm{C}^{15}$	$1.396(5)$
$\mathrm{P}^{1}-\mathrm{O}^{7}$	$1.700(2)$	$\mathrm{C}^{3}-\mathrm{C}^{13}$	$1.509(4)$	$\mathrm{C}^{15}-\mathrm{C}^{16}$	$1.352(7)$
$\mathrm{F}^{1}-\mathrm{C}^{25}$	$1.344(4)$	$\mathrm{C}^{4}-\mathrm{C}^{5}$	$1.616(4)$	$\mathrm{C}^{16}-\mathrm{C}^{17}$	$1.367(7)$
$\mathrm{F}^{2}-\mathrm{C}^{25}$	$1.315(4)$	$\mathrm{C}^{4}-\mathrm{C}^{19}$	$1.508(4)$	$\mathrm{C}^{17}-\mathrm{C}^{18}$	$1.384(6)$
$\mathrm{F}^{3}-\mathrm{C}^{25}$	$1.335(4)$	$\mathrm{C}^{5}-\mathrm{C}^{25}$	$1.547(5)$	$\mathrm{C}^{19}-\mathrm{C}^{20}$	$1.385(4)$
$\mathrm{F}^{4}-\mathrm{C}^{26}$	$1.329(4)$	$\mathrm{C}^{5}-\mathrm{C}^{26}$	$1.536(5)$	$\mathrm{C}^{19}-\mathrm{C}^{24}$	$1.398(5)$
$\mathrm{F}^{5}-\mathrm{C}^{26}$	$1.328(4)$	$\mathrm{C}^{7}-\mathrm{C}^{8}$	$1.530(5)$	$\mathrm{C}^{20}-\mathrm{C}^{21}$	$1.383(5)$
$\mathrm{F}^{6}-\mathrm{C}^{26}$	$1.337(4)$	$\mathrm{C}^{7}-\mathrm{C}^{9}$	$1.547(6)$	$\mathrm{C}^{21}-\mathrm{C}^{22}$	$1.376(5)$
$\mathrm{O}^{1}-\mathrm{C}^{7}$	$1.436(4)$	$\mathrm{C}^{7}-\mathrm{C}^{10}$	$1.500(5)$	$\mathrm{C}^{22}-\mathrm{C}^{23}$	$1.366(5)$
$\mathrm{O}^{2}-\mathrm{C}^{3}$	$1.450(3)$	$\mathrm{C}^{8}-\mathrm{C}^{11}$	$1.488(6)$	$\mathrm{C}^{23}-\mathrm{C}^{24}$	$1.375(5)$

Table S5 - Bond Angles (Degrees) for molecule 14: k53n_fin1 P b c a R $=0.05$

Bond angle	φ	Bond angle	φ	Bond angle	φ
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}$	$92.1(1)$	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{3}$	$100.4(2)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$111.9(3)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$92.4(1)$	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}$	$99.0(2)$	$\mathrm{F}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	$107.6(3)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{6}$	$91.6(1)$	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$112.4(2)$	$\mathrm{C}^{4} \mathrm{C}^{5}-\mathrm{C}^{26}$	$112.6(2)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{7}$	$177.5(1)$	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	$110.6(2)$	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$110.0(3)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$126.4(1)$	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$114.4(2)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	$103.3(3)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{6}$	$105.8(1)$	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$117.6(2)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$106.9(3)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{7}$	$90.4(1)$	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{4}$	$104.6(2)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$108.0(3)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{6}$	$127.4(1)$	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}$	$105.5(2)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$112.3(3)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{7}$	$86.1(1)$	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$107.4(2)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$117.8(3)$
$\mathrm{O}^{6}-\mathrm{P}^{1}-\mathrm{O}^{7}$	$87.8(1)$	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	$116.0(2)$	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$107.9(3)$
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	$116.0(2)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{2}$	$107.1(3)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	$103.4(3)$
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	$112.7(2)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$106.2(3)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$108.3(3)$

$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	$115.7(2)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$111.7(3)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$103.6(3)$
$\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}$	$110.5(2)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$107.1(3)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$117.2(4)$
$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	$101.5(2)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$112.0(3)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$111.0(3)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	$102.5(2)$	$\mathrm{F}^{3}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$112.4(3)$	$\mathrm{F}^{5}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$111.8(3)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$110.2(2)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{F}^{5}$	$106.3(3)$	$\mathrm{F}^{6}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$111.1(3)$
$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$115.0(2)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{F}^{6}$	$107.9(3)$	$\mathrm{C}^{11}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$112.0(4)$

Table S6 - Torsion Angles (Degrees) for molecule 14: k53n_fin1 P b c a R $=0.05$

Torsion angle	τ	Torsion angle	τ	Torsion angle	τ
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	-135.6(2)	$\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{4}$	7.3(2)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	-167.3(3)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{11}-\mathrm{C}^{7}$	-9.0(2)	$\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}$	-115.5(2)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	123.7(3)
$\mathrm{O}^{6}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	118.5(2)	$\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}$	127.2(2)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	-53.6(4)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	-156.1(2)	$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{3}$	56.8(2)	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	-103.9(3)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	109.3(2)	$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}$	-56.3(3)	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	78.8(3)
$\mathrm{O}^{6}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	-63.9(2)	$\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}$	178.8(2)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{1}$	161.4(2)
$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	23.9(2)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{7}$	-40.0(2)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	41.3(3)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	-12.0(2)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	63.8(3)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{3}$	-79.3(3)
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	82.4(2)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	-160.6(2)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	-74.0(3)
$\mathrm{O}^{6}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	-105.9(2)	$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{7}$	79.7(3)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{3}$	165.5(3)
$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	170.0(2)	$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	-176.6(2)	$\mathrm{C}^{26}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{1}$	-83.1(3)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}$	146.8(2)	$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	-40.9(3)	$\mathrm{C}^{26}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	156.8(3)
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}$	54.1(2)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	44.4(4)	$\mathrm{C}^{26}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{3}$	36.2(4)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}$	-119.0(2)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	-132.7(3)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{4}$	45.2(3)
$\mathrm{O}^{7}-\mathrm{P}^{1}-\mathrm{O}^{6}-\mathrm{C}^{5}$	-35.7(2)	$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	-70.9(4)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	-73.9(3)
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	-49.3(2)	$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	112.0(3)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	165.9(2)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	-175.7(2)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{6}$	31.6(2)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{4}$	159.9(3)
$\mathrm{O}^{6}-\mathrm{P}^{1}-\mathrm{O}^{7}-\mathrm{C}^{4}$	56.6(2)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	147.4(2)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	40.8(3)
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	24.9(3)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	-84.7(3)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	-79.4(3)
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	-93.7(3)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{6}$	-73.1(2)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{4}$	-69.1(3)
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	150.4(3)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	42.6(3)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	171.8(3)
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	5.6(2)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	170.5(2)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	51.6(3)
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	-117.3(2)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{6}$	152.8(2)	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	-29.6(3)
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	27.1(3)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	-91.5(3)	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	-148.7(3)
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	152.1(3)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	36.5(3)	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	80.9(4)
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	-88.8(3)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	10.0(4)	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	85.2(4)

Table S7 - Bond Distances (Angstrom) for molecule 15: k60_fin2 P 212121 R = 0.05

Bond	d	Bond	d	Bond	d
$\mathrm{P}^{1}-\mathrm{O}^{1}$	$1.568(6)$	$\mathrm{O}^{3}-\mathrm{C}^{8}$	$1.489(8)$	$\mathrm{C}^{7}-\mathrm{C}^{9}$	$1.504(12)$
$\mathrm{P}^{1}-\mathrm{O}^{2}$	$1.533(7)$	$\mathrm{O}^{2}-\mathrm{H}^{2}$	$0.86(7)$	$\mathrm{C}^{7}-\mathrm{C}^{10}$	$1.533(11)$
$\mathrm{P}^{1}-\mathrm{O}^{3}$	$1.572(6)$	$\mathrm{O}^{1} \mathrm{~S}-\mathrm{H}^{1} \mathrm{~S}$	$0.72(9)$	$\mathrm{C}^{8}-\mathrm{C}^{11}$	$1.510(11)$
$\mathrm{P}^{1}-\mathrm{O}^{4}$	$1.477(6)$	$\mathrm{O}^{1} \mathrm{~S}-\mathrm{H}^{2} \mathrm{~S}$	$0.83(10)$	$\mathrm{C}^{8}-\mathrm{C}^{12}$	$1.512(11)$
$\mathrm{O}^{1}-\mathrm{C}^{7}$	$1.477(9)$	$\mathrm{C}^{7}-\mathrm{C}^{8}$	$1.557(9)$		

Table S8 - Bond Angles (Degrees) for molecule 15: k60_fin2 P 212121 R = 0.05

Bond angle	φ	Bond angle	φ	Bond angle	φ
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}$	$108.5(3)$	$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	$110.0(4)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$106.5(5)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$98.6(2)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$109.0(6)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$107.0(5)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$115.7(3)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	$102.7(5)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$116.0(6)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$107.2(3)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$111.9(6)$	$\mathrm{C}^{11}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$110.1(6)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$113.5(3)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$106.2(6)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$114.1(6)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$112.1(3)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$114.4(6)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	$102.2(4)$
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	$112.1(4)$	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$111.9(6)$		

Table S9 - Torsion Angles (Degrees) for molecule 15: k60_fin2 P 212121 R = 0.05

Torsion angle	τ	Torsion angle	τ	Torsion angle	τ
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	$117.6(5)$	$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$94.7(6)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$-79.0(6)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	$6.1(5)$	$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$-144.6(5)$	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	$-81.0(6)$
$\mathrm{O}^{4}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	$-113.5(5)$	$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	$-35.4(6)$	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$33.6(8)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	$18.8(4)$	$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$-155.4(4)$	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$163.1(6)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	$-93.7(4)$	$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$86.9(5)$	$\mathrm{C}^{10}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	$150.4(6)$
$\mathrm{O}^{4}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	$141.1(4)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	$36.9(6)$	$\mathrm{C}^{10}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$-95.0(8)$
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	$-27.0(6)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$151.5(6)$	$\mathrm{C}^{10}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$34.5(8)$

H -bonding in a crystal of compound $\mathbf{1 5}$.

Table S10 - Bond Distances (Angstrom) for molecule 16: shelx P-1R=0.09

Bond	d	Bond	d	Bond	d
$\mathrm{P}^{1}-\mathrm{O}^{1}$	$1.582(6)$	$\mathrm{O}^{6}-\mathrm{C}^{5}$	$1.385(10)$	$\mathrm{C}^{8}-\mathrm{C}^{11}$	$1.514(15)$
$\mathrm{P}^{1}-\mathrm{O}^{2}$	$1.581(6)$	$\mathrm{O}^{7}-\mathrm{C}^{4}$	$1.423(9)$	$\mathrm{C}^{8}-\mathrm{C}^{12}$	$1.544(15)$
$\mathrm{P}^{1}-\mathrm{O}^{3}$	$1.583(7)$	$\mathrm{O}^{6}-\mathrm{H}^{6}$	$0.66(6)$	$\mathrm{C}^{13}-\mathrm{C}^{18}$	$1.377(12)$
$\mathrm{P}^{1}-\mathrm{O}^{4}$	$1.460(6)$	$\mathrm{O}^{7}-\mathrm{H}^{7}$	$0.87(8)$	$\mathrm{C}^{13}-\mathrm{C}^{14}$	$1.384(13)$
$\mathrm{F}^{1}-\mathrm{C}^{25}$	$1.334(12)$	$\mathrm{C}^{3}-\mathrm{C}^{4}$	$1.573(11)$	$\mathrm{C}^{14}-\mathrm{C}^{15}$	$1.375(14)$
$\mathrm{F}^{2}-\mathrm{C}^{25}$	$1.338(12)$	$\mathrm{C}^{3}-\mathrm{C}^{13}$	$1.501(12)$	$\mathrm{C}^{15}-\mathrm{C}^{16}$	$1.360(16)$
$\mathrm{F}^{3}-\mathrm{C}^{25}$	$1.352(12)$	$\mathrm{C}^{4}-\mathrm{C}^{19}$	$1.542(10)$	$\mathrm{C}^{16}-\mathrm{C}^{17}$	$1.362(17)$
$\mathrm{F}^{4}-\mathrm{C}^{26}$	$1.327(10)$	$\mathrm{C}^{4}-\mathrm{C}^{5}$	$1.636(12)$	$\mathrm{C}^{17}-\mathrm{C}^{18}$	$1.418(16)$
$\mathrm{F}^{5}-\mathrm{C}^{26}$	$1.331(11)$	$\mathrm{C}^{5}-\mathrm{C}^{25}$	$1.566(12)$	$\mathrm{C}^{19}-\mathrm{C}^{24}$	$1.403(12)$
$\mathrm{F}^{6}-\mathrm{C}^{26}$	$1.335(11)$	$\mathrm{C}^{5}-\mathrm{C}^{26}$	$1.586(11)$	$\mathrm{C}^{19}-\mathrm{C}^{20}$	$1.377(11)$
$\mathrm{O}^{1}-\mathrm{C}^{7}$	$1.501(11)$	$\mathrm{C}^{7}-\mathrm{C}^{9}$	$1.527(15)$	$\mathrm{C}^{20}-\mathrm{C}^{21}$	$1.376(12)$
$\mathrm{O}^{2}-\mathrm{C}^{3}$	$1.478(9)$	$\mathrm{C}^{7}-\mathrm{C}^{8}$	$1.536(13)$	$\mathrm{C}^{21}-\mathrm{C}^{22}$	$1.394(14)$
$\mathrm{O}^{3}-\mathrm{C}^{8}$	$1.494(10)$	$\mathrm{C}^{7}-\mathrm{C}^{10}$	$1.518(16)$	$\mathrm{C}^{22}-\mathrm{C}^{23}$	$1.369(15)$

Table S11 - Bond Angles (Degrees) for molecule 16: shelx P-1R=0.09

Bond angle	φ	Bond angle	φ	Bond angle	φ
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}$	$101.2(3)$	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$110.2(6)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$111.6(7)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$99.6(3)$	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	$113.0(6)$	$\mathrm{F}^{5}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$113.0(7)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$118.9(4)$	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{3}$	$111.0(6)$	$\mathrm{F}^{6}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$110.4(7)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$109.6(3)$	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$103.5(6)$	$\mathrm{F}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	$106.1(7)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$112.7(3)$	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	$113.8(6)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{F}^{5}$	$107.4(7)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$113.4(4)$	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$109.5(6)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$107.1(8)$
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	$109.6(5)$	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$107.2(7)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{2}$	$108.7(7)$
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	$121.0(4)$	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}$	$108.2(7)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$114.7(9)$
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	$110.3(5)$	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{4}$	$114.0(6)$	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$109.4(8)$
$\mathrm{C}^{5}-\mathrm{O}^{6}-\mathrm{H}^{6}$	$139(6)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$106.1(8)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	$107.1(8)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$106.8(6)$	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	$103.6(6)$	$\mathrm{C}^{8}-\mathrm{C}^{7}-\mathrm{C}^{9}$	$115.1(8)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	$106.4(6)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$110.3(7)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$105.9(7)$
$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$115.7(6)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$114.6(8)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	$103.4(7)$
$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}$	$108.0(6)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$105.7(8)$	$\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$106.3(8)$

$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$108.3(6)$	$\mathrm{F}^{3}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$110.0(7)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	$113.3(9)$
$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$106.2(6)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{F}^{6}$	$108.1(7)$	$\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	$115.4(8)$

Table S12 - Torsion Angles (Degrees) for molecule 16: shelx P-1 R = 0.09

Torsion angle	τ	Torsion angle	τ	Torsion angle	τ
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	-125.3(5)	$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	45.2(9)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{1}$	47.2(10)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	-12.9(5)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	-61.9(9)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	-75.8(9)
$\mathrm{O}^{4}-\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}$	110.7(6)	$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	110.2(8)	$\mathrm{C}^{26}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{1}$	-74.0(9)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	-159.1(6)	$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	56.3(10)	$\mathrm{C}^{26}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	163.0(7)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	96.4(6)	$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	-131.6(8)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{4}$	159.7(7)
$\mathrm{O}^{4}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	-31.0(7)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{6}$	165.2(6)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	-79.1(8)
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	-11.1(5)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	-70.1(8)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	39.5(9)
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	94.6(5)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	49.9(8)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{4}$	-78.4(8)
$\mathrm{O}^{4}-\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}$	-138.5(5)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{6}$	-71.6(8)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	42.8(9)
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}$	31.4(7)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	53.1(8)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	161.4(6)
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{9}$	153.0(6)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	173.0(6)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{4}$	45.5(10)
$\mathrm{P}^{1}-\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{10}$	-90.2(8)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{6}$	47.0(8)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	166.6(7)
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	163.2(5)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	171.8(6)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	-74.8(8)
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	-72.6(7)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	-68.3(7)	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	-37.0(8)
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{7}$	30.2(7)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	175.3(8)	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	-152.5(8)
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{11}$	152.1(7)	$\mathrm{O}^{7}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	-1.5(10)	$\mathrm{O}^{1}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	77.2(9)
$\mathrm{P}^{1}-\mathrm{O}^{3}-\mathrm{C}^{8}-\mathrm{C}^{12}$	-89.3(8)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	56.0(10)	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	-152.3(8)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{7}$	46.1(8)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	-120.8(8)	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	92.1(11)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	-75.4(7)	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	-66.7(9)	$\mathrm{C}^{9}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	-38.1(11)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	163.6(6)	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	116.5(8)	$\mathrm{C}^{10}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{O}^{3}$	79.4(9)
$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{7}$	-72.3(8)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{1}$	175.0(7)	$\mathrm{C}^{10}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{11}$	-36.2(12)
$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	166.2(6)	$\mathrm{O}^{6}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	52.0(9)	$\mathrm{C}^{10}-\mathrm{C}^{7}-\mathrm{C}^{8}-\mathrm{C}^{12}$	-166.4(9)

H -bonding in a crystal of compound $\mathbf{1 6}$.

Table S13 - Bond Distances (Angstrom) for solvate 18 of molecule 17 with pinacol: k66_f2 P 21/c $\mathrm{R}=0.08$

Bond	d	Bond	d	Bond	d
$\mathrm{P}^{1}-\mathrm{O}^{1}$	$1.535(5)$	$\mathrm{O}^{6}-\mathrm{C}^{4}$	$1.416(7)$	$\mathrm{C}^{19}-\mathrm{C}^{24}$	$1.395(9)$
$\mathrm{P}^{1}-\mathrm{O}^{2}$	$1.588(4)$	$\mathrm{O}^{7}-\mathrm{C}^{5}$	$1.421(8)$	$\mathrm{C}^{20}-\mathrm{C}^{21}$	$1.380(11)$
$\mathrm{P}^{1}-\mathrm{O}^{3}$	$1.551(4)$	$\mathrm{O}^{5}-\mathrm{C}^{6}$	$1.462(8)$	$\mathrm{C}^{22}-\mathrm{C}^{23}$	$1.373(13)$
$\mathrm{P}^{1}-\mathrm{O}^{4}$	$1.489(4)$	$\mathrm{C}^{3}-\mathrm{C}^{13}$	$1.530(8)$	$\mathrm{C}^{6}-\mathrm{C}^{8}$	$1.540(9)$
$\mathrm{F}^{1}-\mathrm{C}^{25}$	$1.348(8)$	$\mathrm{C}^{3}-\mathrm{C}^{4}$	$1.573(8)$	$\mathrm{C}^{6}-\mathrm{C}^{6 \mathrm{a}}$	$1.565(9)$
$\mathrm{F}^{2}-\mathrm{C}^{25}$	$1.347(8)$	$\mathrm{C}^{4}-\mathrm{C}^{19}$	$1.528(9)$	$\mathrm{C}^{6}-\mathrm{C}^{7}$	$1.527(9)$
$\mathrm{F}^{3}-\mathrm{C}^{25}$	$1.322(8)$	$\mathrm{C}^{4}-\mathrm{C}^{5}$	$1.635(8)$	$\mathrm{C}^{5}-\mathrm{C}^{26}$	$1.554(10)$
$\mathrm{F}^{4}-\mathrm{C}^{26}$	$1.341(9)$	$\mathrm{C}^{5}-\mathrm{C}^{25}$	$1.533(9)$	$\mathrm{C}^{15}-\mathrm{C}^{16}$	$1.370(15)$
$\mathrm{F}^{5}-\mathrm{C}^{26}$	$1.349(9)$	$\mathrm{C}^{13}-\mathrm{C}^{14}$	$1.372(9)$	$\mathrm{C}^{17}-\mathrm{C}^{18}$	$1.399(12)$
$\mathrm{F}^{6}-\mathrm{C}^{26}$	$1.334(10)$	$\mathrm{C}^{13}-\mathrm{C}^{18}$	$1.371(9)$	$\mathrm{C}^{18}-\mathrm{C}^{20}$	$1.389(10)$
$\mathrm{O}^{2}-\mathrm{C}^{3}$	$1.447(7)$	$\mathrm{C}^{16}-\mathrm{C}^{17}$	$1.380(14)$	$\mathrm{C}^{23}-\mathrm{C}^{24}$	$1.396(11)$

Table S14 - Bond Angles (Degrees) for solvate 18 of molecule 17 with pinacol: k66_f2 P 21/c R = 0.08

Bond angle	φ	Bond angle	φ	Bond angle	φ
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}$	$103.4(2)$	$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{3}$	$107.9(4)$	$\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{7}$	$104.7(5)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$102.6(3)$	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	$113.0(4)$	$\mathrm{C}^{6 a}-\mathrm{C}^{6}-\mathrm{C}^{7}$	$112.4(5)$
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$116.9(3)$	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$107.9(5)$	$\mathrm{C}^{6}-\mathrm{C}^{6}-\mathrm{C}^{8}$	$112.2(5)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{3}$	$109.1(2)$	$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$108.7(5)$	$\mathrm{C}^{7}-\mathrm{C}^{6}-\mathrm{C}^{8}$	$111.0(5)$
$\mathrm{O}^{2}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$111.3(2)$	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}$	$115.5(5)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$112.2(6)$
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{4}$	$112.8(2)$	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$104.0(5)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$105.7(6)$
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	$122.5(3)$	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{4}$	$108.8(4)$	$\mathrm{F}^{2}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$112.6(5)$
$\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	$122.7(5)$	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{25}$	$108.5(5)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{3}$	$106.8(5)$
$\mathrm{C}^{20}-\mathrm{C}^{19}-\mathrm{C}^{24}$	$117.4(6)$	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$108.3(5)$	$\mathrm{F}^{1}-\mathrm{C}^{25}-\mathrm{F}^{2}$	$103.6(5)$
$\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	$119.8(6)$	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	$115.9(5)$	$\mathrm{F}^{3}-\mathrm{C}^{25}-\mathrm{C}^{5}$	$115.1(6)$
$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$111.6(5)$	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	$110.7(5)$	$\mathrm{F}^{6}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$112.4(6)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	$106.8(4)$	$\mathrm{C}^{14}-\mathrm{C}^{13}-\mathrm{C}^{18}$	$119.8(6)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{F}^{5}$	$105.7(6)$
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	$111.6(4)$	$\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{8}$	$109.1(5)$	$\mathrm{F}^{4}-\mathrm{C}^{26}-\mathrm{C}^{5}$	$111.6(6)$
$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{5}$	$103.6(4)$	$\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{62}$	$107.0(4)$	$\mathrm{F}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	$107.7(6)$

Table S15 - Torsion Angles (Degrees) for solvate 18 of molecule 17 with pinacol: k66_f2 P 21/c R $=0.08$

Torsion angle	τ	Torsion angle	τ	Torsion angle	τ
$\mathrm{O}^{1}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	155.2(4)	$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	156.0(5)	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{3}$	176.2(5)
$\mathrm{O}^{3}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	-96.2(4)	$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	-80.1(6)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	174.8(5)
$\mathrm{O}^{4}-\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}$	29.0(5)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{7}$	-82.9(6)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{3}$	53.5(7)
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}$	-168.4(3)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	39.6(7)	$\mathrm{C}^{26}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{1}$	166.0(5)
$\mathrm{P}^{1}-\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}$	69.4(5)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	163.4(5)	$\mathrm{C}^{26}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{3}$	-71.6(7)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{6}$	-55.0(5)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{7}$	152.2(5)	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	-70.9(7)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	58.8(6)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{25}$	-85.3(7)	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	168.0(6)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	-172.3(4)	$\mathrm{C}^{19}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}$	38.6(7)	$\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{5}$	45.8(8)
$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{O}^{6}$	67.2(6)	$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	-168.2(6)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{4}$	-68.1(7)
$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{5}$	-178.9(4)	$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	6.5(8)	$\mathrm{C}^{25}-\mathrm{C}^{5}-\mathrm{C}^{26}-\mathrm{F}^{6}$	52.8(8)
$\mathrm{C}^{13}-\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}$	-50.1(6)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	-51.5(8)	$\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{6 \mathrm{a}}-\mathrm{O}^{5 \mathrm{a}}$	180.0(5)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	48.8(7)	$\mathrm{C}^{3}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	123.2(6)	$\mathrm{O}^{5}-\mathrm{C}^{6}-\mathrm{C}^{6 a}-\mathrm{C}^{8 \mathrm{a}}$	60.4(6)
$\mathrm{O}^{2}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	-130.8(6)	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{20}$	75.9(8)	$\mathrm{C}^{7}-\mathrm{C}^{6}-\mathrm{C}^{6 a}-\mathrm{O}^{5 \mathrm{a}}$	65.6(6)
$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{14}$	-70.6(7)	$\mathrm{C}^{5}-\mathrm{C}^{4}-\mathrm{C}^{19}-\mathrm{C}^{24}$	-109.3(7)	$\mathrm{C}^{7}-\mathrm{C}^{6}-\mathrm{C}^{6 a}-\mathrm{C}^{7 \mathrm{a}}$	-180.0(5)
$\mathrm{C}^{4}-\mathrm{C}^{3}-\mathrm{C}^{13}-\mathrm{C}^{18}$	109.8(6)	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{1}$	53.8(7)	$\mathrm{C}^{8}-\mathrm{C}^{6}-\mathrm{C}^{6 a}-\mathrm{O}^{5 \mathrm{a}}$	-60.4(6)
$\mathrm{O}^{6}-\mathrm{C}^{4}-\mathrm{C}^{5}-\mathrm{O}^{7}$	33.5(6)	$\mathrm{O}^{7}-\mathrm{C}^{5}-\mathrm{C}^{25}-\mathrm{F}^{2}$	-62.5(7)	$\mathrm{C}^{8}-\mathrm{C}^{6}-\mathrm{C}^{6 a}-\mathrm{C}^{8 a}$	180.0(5)

H-bonding in a crystal of solvate $\mathbf{1 8}$ of molecule $\mathbf{1 7}$ with pinacol, view along the $0 z$ axis.

Figure 2. The fragment of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ of phosphorane 14 (the low-field region is shown).

17

Figure 3. The fragments of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ of phosphorane $\mathbf{1 4}$ (the aromatic carbons and CH_{3} groups regions are shown).

Figure 4. The fragments of ${ }^{13} \mathrm{C}$ NMR spectrum $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right)$ of phosphorane 14.

Figure 5. The fragments of ${ }^{13} \mathrm{C}$ NMR spectrum ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$) of phosphorane $\mathbf{1 4}$ (the CF_{3} and CH_{3} groups regions are shown).

Figure 9. Full ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphorane 14.

Figure 13. The fragments of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}$ NMR spectra ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of phosphorane $\mathbf{1 4}$ (the $78-84 \mathrm{ppm}$ field is shown).

Figure 14. The high-field region of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}$ NMR spectra ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of phosphorane 14.

Figure $15 .{ }^{19} \mathrm{~F}$ NMR spectrum $\left(376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphoranes $\mathbf{1 3}, \mathbf{1 4}$ mixture after ${ }^{13} \mathrm{C}$ experiments for compound 13 .

30

Figure 16. ${ }^{31} \mathrm{P}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphoranes $\mathbf{1 3}, \mathbf{1 4}$ mixture after ${ }^{13} \mathrm{C}$ experiments for compound $\mathbf{1 3}$.
31

Figure 19. ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphoranes $\mathbf{1 3}, \mathbf{1 4}$ mixture $(\mathbf{1 3}-\mathbf{A}, \mathbf{1 4}-\mathbf{B})$.

Figure 20. The low-field region of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphoranes $\mathbf{1 3}, \mathbf{1 4}$ mixture $(\mathbf{1 3}-\mathbf{A}, \mathbf{1 4} \mathbf{- \mathbf { B }})$.

Figure 21. The fragments of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}$ NMR spectra ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of phosphoranes $\mathbf{1 3}$, $\mathbf{1 4}$ mixture (the $76-100 \mathrm{ppm}$ field is shown) ($\mathbf{1 3} \mathbf{- A}, 14-\mathbf{B})$.

Figure 22. The fragments of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}$ NMR spectra $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$) of phosphoranes $\mathbf{1 3}, \mathbf{1 4}$ mixture (the $76-89 \mathrm{ppm}$ field is shown) ($\mathbf{1 3 - A , 1 4 - B) .}$

Figure 24. The fragment of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of phosphoranes $\mathbf{1 3}, \mathbf{1 4}$ mixture (the $76-100$ ppm field is shown).

Figure 25. A comparison of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphorane $\mathbf{1 4}$ and compounds $\mathbf{1 3}$, $\mathbf{1 4}$ mixture (the low-field region is shown).

Figure 26. A comparison of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphorane $\mathbf{1 4}$ and compounds $\mathbf{1 3}$, $\mathbf{1 4}$ mixture (the aromatic carbons region is shown).

Figure 27. A comparison of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphorane $\mathbf{1 4}$ and compounds $\mathbf{1 3}, \mathbf{1 4}$ mixture (the $76-101 \mathrm{ppm}$ region is shown).

Figure 28. A comparison of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) of phosphorane $\mathbf{1 4}$ and compounds $\mathbf{1 3}$, $\mathbf{1 4}$ mixture (the high-field region is shown) $(\mathbf{1 3 - A}, \mathbf{1 4 - B})$.

Figure 29. ${ }^{31} \mathrm{P}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(162.0 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ of phosphoranes $\mathbf{1 3}$ before ${ }^{13} \mathrm{C}$ experiments $(\mathbf{1 3}-\mathbf{A}, \mathbf{1 4}-\mathbf{B})$.

Figure $.32{ }^{1} \mathrm{H}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{DMF}^{2} \mathrm{~d}_{7}, 25^{\circ} \mathrm{C}\right)$ of phospholane 16.

Figure $34 .{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ dept spectrum $\left(100.6 \mathrm{MHz}\right.$, DMF- $\left.\mathrm{d}_{7}, 25^{\circ} \mathrm{C}\right)$ of phospholane 16.

Figure 35 . Full ${ }^{13} \mathrm{C}$ spectrum $\left(100.6 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d}_{7}, 25^{\circ} \mathrm{C}\right)$ of phospholane 16.
50

Figure 37. A comparison of ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ dept spectra $\left(100.6 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d}_{7}, 25^{\circ} \mathrm{C}\right)$ of phospholane 16.

Figure 38. A comparison of ${ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra (100.6 MHz , DMF- $\mathrm{d}_{7}, 25^{\circ} \mathrm{C}$) of phospholane 16.

Figure 39. Low-field fragments of ${ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra $\left(100.6 \mathrm{MHz}\right.$, DMF- $\left.\mathrm{d}_{7}, 25^{\circ} \mathrm{C}\right)$ of phospholane 16.

Figure 40 . High-field fragments of ${ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra ($100.6 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d}_{7}, 25^{\circ} \mathrm{C}$) of phospholane $\mathbf{1 6}$ (the $81-90$ ppm field is shown).

Figure 41. High-field fragments of ${ }^{13} \mathrm{C}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra ($100.6 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d}_{7}, 25^{\circ} \mathrm{C}$) of phospholane $\mathbf{1 6}$ (the methyl groups region is shown).

Figure $42 .{ }^{31} \mathrm{P}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra $\left(162.0 \mathrm{MHz}\right.$, DMF- $\left.\mathrm{d}_{7}, 25^{\circ} \mathrm{C}\right)$ of phospholane 16.

Figure $43 .{ }^{19} \mathrm{~F}$ NMR spectrum ($376.4 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d}_{7}, 25^{\circ} \mathrm{C}$) of phospholane 16.

Figure $44 .{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 25^{\circ} \mathrm{C}$) of phospholane 16.

Figure 46. ${ }^{13} \mathrm{C}$ NMR spectrum (100.6 MHz, DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$) of phospholane 16.

Figure 47. IR spectrum of phosphorane $\mathbf{1 3}$ (KBr pellet).

Figure 48. IR spectrum of phosphorane 13 (nujol).

Figure 49. IR spectrum of phosphorane $\mathbf{1 4}$ (KBr pellet).

Figure 50. IR spectrum of phosphorane 14 (nujol).

Figure 51. IR spectrum of phospholane $\mathbf{1 6}$ (KBr pellet).

Figure 52. IR spectrum of phospholane 16 (nujol).

