Supporting Information

Confined-Space Synthesis of Hierarchical SnO₂ Nanorods Assembled

by Ultrasmall Nanocrystals for Energy Storage

Menghu Wang, Hang Ping, Hao Xie, Baoli Chen, Min Yan, Weijian Fang, and Zhengyi Fu

Figure S1. Scheme of strategy for confined space synthesis.

Figure S2. Mineralization of genetically engineered bacteria at 37 °C for 24 hours. (a) Low and (b) high magnification SEM image of mineralized bacteria. (c) XRD pattern. (d) TG curves.

Figure S3. (a) Low and (b) high magnification SEM images of INP-modified product annealed at 600 $^{\circ}$ C in air.

Figure S4. XRD pattern of SnO₂/C.

Figure S5. (a) Nitrogen adsorption and desorption isotherms and (b) pore size distribution of SnO_2/C .

Figure S6. Charge-discharge voltage profiles of SnO_2/C electrode of the first cycle at a current rate of 0.2 A g⁻¹.

Figure S7. Cycling performance of SnO_2/C electrode at current rates of 0.5 A g⁻¹ (a) and 2 A g⁻¹ (b).

Figure S8. Cycling performance of carbon at a current rate of 0.2 A g^{-1} .

Figure S9. (a) Low and (b) high magnification SEM images of commercial 8 nm SnO₂ powder.

Figure S10. Cycling performance of commercial powder electrode at a current rate of 0.5 A g⁻¹.

Electrode materials	Surface area	Specific capacity (mA h g-1)	Discharge rate	References
	(m² g⁻¹)		(mA g⁻¹)	
SnO ₂ nanosheets	183.3	534 (after 50 cycles)	156	S1
Long SnO ₂ nanotubes	213	468 (after 30 cycles)	100	S2
SnO_2 nanoboxes	60	570 (after 40 cycles)	156	S3
SnO ₂ nanowires	—	270 (after 50 cycles)	100	S4
Bowl-like SnO ₂ @carbon	103.8	963 (after 100 cycles)	400	S5
hollow particles				
Ordered network of	87	564 (after 100 cycles)	390	S6
interconnected SnO ₂				
SnO ₂ nanocrystals + N-	_	1346 (after 500 cycles)	500	S7
doped grapheme sheets				
Ultra-uniform SnOx +	—	608 (after 200 cycles)	500	S8
carbon nanohybrids				
SnO ₂ -Graphene Aerogel	365	1299 (after 500 cycles)	500	S9
Graphene-based	251.7	847 (after 50 cycles)	78	S10
mesoporous SnO ₂				
N-doped grapheme-SnO ₂	_	910 (after 50 cycles)	50	S11
Carbon coated SnO				
nanorod	106	520 (after 50 cycles)	200	Our work

Table S1. Comparison of electrochemical performance of various SnO₂ based materials.

Supplementary References

S1. C. Wang, G. H. Du, K. Stahl, H. X. Huang, Y. J. Zhong and J. Z. Jiang, J. Phys. Chem. C, 2012, 116, 4000-4011.

S2. J. F. Ye, H. J. Zhang, R. Yang, X. G. Li and L. M. Qi, Small, 2010, 6, 296-306.

S3. Z. Y. Wang, D. Y. Luan, F. Y. C. Boey and X. W. Lou, J. Am. Chem. Soc., 2011, 133, 4738-4771.

S4. M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu, Angew. Chem. Int. Ed., 2007, 46, 750-753.

S5. J. Liang, X. Y. Yu, H. Zhou, H. B. Wu, S. J. Ding and X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 12803-12807.

S6. V. Etacheri, G. A. Seisenbaeva, J. Caruthers, G. Daniel, J. M. Nedelec, V. G. Kessler and V. G. Pol, Adv. Energy Mater., 2015, 5, 1401289.

S7. X. S. Zhou, L. J. Wan and Y. G. Guo, Adv. Mater., 2013, 25, 2152-2157.

S8. X. S. Zhou, Z. H. Dai, S. H. Liu, J. C. Bao and Y. G. Guo, Adv. Mater., 2014, 26, 3943-3949.

S9. Z. Li, J. Ding, H. L. Wang, K. Cui, T. Stephenson, D. Karpuzov and D. Mitlin, Nano Energy, 2015, 15, 369-378.

S10. S. Yang, W. B. Yue, J. Zhu, Y. Ren and X. J. Yang, Adv. Funct. Mater., 2013, 23, 3570-3576.

S11. X. Wang, X. Q. Cao, L. Bourgeois, H. Guan, S. M. Chen, Y. Zhong, D. M. Tang, H. Q. Li, T. Y. Zhai, L. Li, Y. Bando and D. Golberg, Adv. Funct. Mater., 2012, 22, 2682-2690.