Selective Fluorescence Detection of Anilines and Fe³⁺ ions by

Two Lanthanide Metal – Organic Frameworks

Keheng Xu¹, Fengqin Wang^{*1}, Shuo Huang¹, Zongchao Yu¹, Jianxin Zhang¹, Jianguo

Yu¹, Haiyan Gao², Yiyuan Fu¹, Xiuyu Li¹, Yongnan Zhao²

¹College of Environment and Chemical Engineering & State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China ²College of Materials and Engineering & Key Lab of Hollow Fiber Membrane Materials & Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China

E-mail: wangfengqin@tjpu.edu.cn Tel: (+86)-22-83955457

Supplementary materials

Fig. S1. The XRD patterns of 1 and the simulated.

Fig. S2. The XRD patterns of 1 and 2.

Fig. S3. IR spectra of 1 and 2.

Fig. S5. The fluorescence spectra of 1 in the solid state.

Fig. S6. The fluorescence spectra of 2 in the solid state.

Fig. S7. The fluorescence spectra of L ligand in the solid state.

Fig. S8. Emission spectra of 1 in different organic solvent at room temperature.

Fig. S9. Emission spectra of 2 in different organic solvent at room temperature.

Fig. S10. Fluorescence titration of **1** dispersed in methanol with the addition of different volumes of 10⁻³ M methanol solution of aniline.

Fig. S11. Fluorescence titration of 1 dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution of *p*-methylaniline.

Fig. S12. Fluorescence titration of **1** dispersed in methanol with the addition of different volumes of 10⁻³ M methanol solution of diphenylamine.

Fig. S13. Fluorescence titration of **2** dispersed in methanol with the addition of different volumes of 10⁻³ M methanol solution of aniline.

Fig. S14. Fluorescence titration of **2** dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution of *p*-methylaniline.

Fig. S15. Fluorescence titration of 1 and 2 dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution of triethylamine.

Fig. S16. The powder X-ray diffraction of 1 and 2 before and after the fluorescence titration.

Fig. S18. Fluorescence titration of 1 and 2 dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Fe³⁺. The slit widths for excitation and emission were both 5 nm.

Fig. S19. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Ag⁺.

Fig. S20. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Al³⁺.

Fig. S21. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Ba²⁺.

Fig. S22. Fluorescence titration of 1 and 2 dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Zn^{2+} .

Fig. S23. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Ca²⁺.

Fig. S24. Fluorescence titration of 1 and 2 dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Co^{2+} .

Fig. S25. Fluorescence titration of 1 and 2 dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Cu²⁺.

Fig. S26. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10⁻³ M methanol solution containing Li⁺.

Fig. S27. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Mg²⁺.

Fig. S28. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10⁻³ M methanol solution containing Na⁺.

Fig. S29. Fluorescence titration of 1 and 2 dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Ni²⁺.

Fig. S30. Fluorescence titration of **1** and **2** dispersed in methanol with the addition of different volumes of 10^{-3} M methanol solution containing Pb²⁺.