Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Triphenylbismuth carbonate-mediated oxidation of hydroxylamines to nitrones and in situ

1,3-dipolar cycloaddition

Dinh-Vu Nguyen, Praveen Prakash, Edmond Gravel and Eric Doris

1.	General	S2
2.	Gram-scale synthesis of compound 2a	S2
3.	Gram-scale synthesis of compound 3a	S2
4.	Analytical data	S 3
5.	References	S6
6.	Copies of ¹ H and ¹³ C NMR Spectra	S7

1. General

Reactions were carried out using dry solvents. TLC was performed on silica gel plates visualized either with a UV lamp (254 nm/365 nm), or using solutions of phosphomolybdic acid in EtOH or KMnO₄–K₂CO₃ in water followed by heating. Flash chromatography was performed on Kieselgel 60 (230–240 mesh, Merck). NMR spectra were recorded on a Bruker AVANCE DPX 400 spectrometer. ¹H NMR spectra were recorded at 400 MHz and data are reported as follows: chemical shift in ppm from tetramethylsilane as internal standard, multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintuplet, m = multiplet), coupling constant (*J*) in Hz, integration. ¹³C NMR spectra were recorded at 100 MHz and data are reported as follows: chemical shift in ppm from tignal(s) used for calibration, multiplicity with respect to proton (deduced from DEPT experiments, s = quaternary carbon (C), d = CH, t = CH₂, q = CH₃). Mass spectra were recorded using a Waters Micromass ZQ 2000 ESI spectrometer. IR-spectra were recorded using a Perkin-Elmer 2000 FT-IR. Wavenumbers are given in cm⁻¹ at their maximum intensity.

2. Gram-scale synthesis of compound 2a.

At room temperature, to a solution of *N*,*N*-dibenzyl hydroxylamine **1a** (1.02 g, 4.78 mmol, 1 equiv.) in CH_2Cl_2 (50 mL) was added portionwise Ph_3BiCO_3 (2.63 g, 1.1 equiv.). The white slurry was stirred at room temperature for 2 h. The mixture was then filtered over a pad of celite, rinsed with CH_2Cl_2 , and the solvent was evaporated under vacuum. The crude product was purified by flash chromatography over silica (Pentane/EtOAc, 1:0 to 1:1) to afford 0.98 g of compound **2a** (97%, white solid).

3. Gram-scale synthesis of compound 3a.

At room temperature, to a solution of *N*,*N*-dibenzyl hydroxylamine **1a** (1 g, 4.68 mmol, 1 equiv.) and benzannulated cyclooctyne **4** (0.96 g, 1 equiv.) in CH_2Cl_2 (70 mL) was added portionwise Ph_3BiCO_3 (2.57 g, 1.1 equiv.). The white slurry was stirred at room temperature for 2 h. The mixture was then filtered over a pad of celite, rinsed with CH_2Cl_2 , and the solvent was evaporated under vacuum. The crude product was purified by flash chromatography over silica (Pentane/EtOAc, 1:0 to 9:1) to afford 1.47 g of compound **3a** (76%, white solid).

4. Analytical data

Compound 2a.¹ Flash chromatography (Pentane/EtOAc, from 1:0 to 1:1). ¹H NMR (CDCl₃) δ 8.23-8.18 (m, 2H), 7.52-7.26 (m, 9H), 5.06 (s, 2H) ppm. ¹³C NMR (CDCl₃) δ 134.2 (d), 133.1 (s), 130.4 (d), 130.3 (d), 129.2 (d), 128.9 (d), 128.5 (d), 128.4 (d), 71.1 (t) ppm. IR (neat) 1580, 1457, 1147, 903, 724 cm⁻¹. MS (ES⁺): 212 [M+H]⁺.

Compound 2b.² Flash chromatography (Pentane/EtOAc, from 1:0 to 8:2). ¹H NMR (CDCl₃) δ 8.41-8.39 (m, 2H), 7.92 (s, 1H), 7.79-7.77 (m, 2H), 7.51-7.46 (m, 6H) ppm. ¹³C NMR (CDCl₃) δ 149.0 (s), 134.5 (d), 130.9 (s), 129.9 (d), 129.1 (d), 128.9 (d), 128.6 (d), 121.7 (d) ppm. IR (neat) 1549, 1484, 1444, 1065, 919, 764 cm⁻¹. MS (ES⁺): 198 [M+H]⁺.

Compound 2c.³ Flash chromatography (CH₂Cl₂/MeOH from 1:0 to 98:2). ¹H NMR (CDCl₃) δ 6.64 (t, *J* = 5.8 Hz, 1H), 3.73 (t, *J* = 7.0 Hz, 2H), 2.48 (q, *J* = 6.8 Hz, 2H), 1.89 (qt, *J* = 7.2 Hz, 2H), 1.51 (qt, *J* = 7.2 Hz, 2H), 1.35-1.24 (m, 18H), 0.87 (t, *J* = 6.7 Hz, 1H) ppm. ¹³C NMR (CDCl₃) δ 139.2 (d), 65.3 (t), 31.6 (t, x2), 29.3 (t), 29.0 (t, x2), 28.9 (t), 27.3 (t), 26.5 (t), 26.4 (t), 25.5 (t), 22.5 (t), 14.0 (q) ppm. IR (neat) 1600, 1463, 904, 724 cm⁻¹. MS (ES⁺): 256 [M+H]⁺.

Compound 2d.¹ Compound **2d** was isolated from compound **2d**' by flash chromatography (Pentane/EtOAc, from 1:0 to 7:3 to 0:1, then $CH_2Cl_2/MeOH$ 95:5). ¹H NMR (CDCl₃) δ 8.25-8.23 (m, 2H), 7.45-7.41 (m, 3H), 7.37 (s, 1H), 3.92 (t, *J* = 7.14 Hz, 2H), 2.00 (quint, *J* = 7.5 Hz, 2H), 1.40-1.24 (m, 18H), 0.87 (t, *J* = 6.39 Hz, 3H) ppm. ¹³C NMR (CDCl₃) δ 134.1 (s), 130.4 (s), 130.2 (d), 128.4 (d), 121.7 (d), 67.3 (t), 31.8 (t), 29.5 (t), 29.4 (t), 29.3 (t), 29.2 (t), 29.1 (t), 27.7 (t), 26.4 (t), 22.6 (t), 14.0 (q) ppm. IR (neat) 1457, 1153, 903, 724 cm⁻¹. MS (ES⁺): 290 [M+H]⁺.

Compound 2d'.¹ ¹H NMR (CDCl₃) δ 7.40-7.33 (m, 5H), 6.62 (t, *J* = 5.6 Hz, 1H), 4.84 (s, 2H), 2.45 (dd, *J* = 13.8, 6.94 Hz, 2H), 1.48-1.40 (m, 2H), 1.31-1.19 (m, 16H), 0.87 (t, *J* = 6.44 Hz, 3H). ¹³C NMR (CDCl₃) δ 137.5 (s), 130.4 (d), 129.3 (d), 128.9 (d), 128.2 (d), 85.8 (t), 31.8 (t), 29.6 (t), 29.5 (t), 29.4 (t), 29.2 (t), 22.6 (t), 14.0 (q) ppm. IR (neat) 1777, 1456, 1214, 908, 750 cm⁻¹. MS (ES⁺): 290 [M+H]⁺.

Compound 2e. Flash chromatography (Pentane/EtOAc, from 1:0 to 8:2). ¹H NMR (CDCl₃) δ 8.24-8.22 (m, 2H), 7.49 (s, 1H), 7.43-7.37 (m, 3H), 4.48-4.41 (m, 1H), 2.33-2.24 (m, 2H), 2.05-1.90 (m, 4H), 1.70-1.60 (m, 2H) ppm. ¹³C NMR (CDCl₃) δ 132.8 (d), 130.6 (s), 130.0 (d), 128.4 (d, x2), 76.3 (d), 31.4 (t), 25.5 (t) ppm. IR (neat) 1572, 1451, 1328, 140, 903, 726, 695 cm⁻¹. MS (ES⁺): 190 [M+H]⁺. HRMS calcd for C₁₂H₁₆NO [M+H]⁺ 190.1232, found 190.1244.

 $\operatorname{kert}_{\operatorname{N}_{O^{\Theta}}}^{\operatorname{kert}}$

Compound 2f. Flash chromatography (Pentane/EtOAc, from 1:0 to 7:3). ¹H NMR (CDCl₃) δ 8.29-8.26 (m, 2H), 7.49-7.37 (m, 4H), 3.61-3.55 (m, 1H), 2.12-2.00 (m, 2H), 1.67-1.57 (m, 2H), 0.93 (td, *J* = 7.5, 1.4, Hz, 6H) ppm. ¹³C NMR (CDCl₃) δ 134.0 (d), 130.3 (s), 130.0 (d), 128.5 (d), 128.4 (d), 80.7 (d), 25.9 (t), 10.7 (q) ppm. IR (neat) 1572, 1455, 1337, 1150 cm⁻¹. MS (ES⁺): 192 [M+H]⁺. HRMS calcd for C₁₂H₁₈NO [M+H]⁺ 192,1388, found 192.1401.

Compounds 2g and **2g'**. Flash chromatography (Pentane/EtOAc, from 1:0 to 6:4), 1:1 ratio of **2g** and **2g'**. ¹H NMR (CDCl₃) δ 8.27-8.18 (m, 4H), 7.47-7.32 (m, 11H), 7.12-7.04 (m, 3H), 5.02 (s, 2H), 4.99 (s, 1.4 H) ppm.¹³C NMR (CDCl₃) δ 163.3 (s, ¹*J*_{*C-F*} = 253 Hz), 163.0 (s, ¹*J*_{*C-F*} = 253 Hz), 137.4 (d), 137.0 (d), 134.4 (d), 133.3 (d), 132.8 (s), 131.6 (d), 131.1 (d, ³*J*_{*C-F*} = 9 Hz), 130.9 (d, ³*J*_{*C-F*} = 9 Hz), 130.6 (d), 130.4 (d), 130.1 (s), 126.6 (s, ⁴*J*_{*C-F*} = 3 Hz), 115.8 (d, ²*J*_{*C-F*} = 21 Hz), 115.5 (d, ²*J*_{*C-F*} = 21 Hz), 71.0 (t), 70.2 (t) ppm. IR (neat) 1597, 1503, 1231, 1147, 846, 703 cm⁻¹. MS (ES⁺): 230 [M+H]⁺. HRMS calcd for C₁₄H₁₃FNO [M+H]⁺ 230.0981, found 230.0965.

Compounds 2h and **2h'.** Flash chromatography (Pentane/EtOAc, 1:0 to 6:4), 1:1 ratio of **2h** and **2h'**. ¹H NMR (CDCl₃) δ 8.22-8.18 (m, 4H), 7.47 (dd, *J* = 7.9, 2.0 Hz, 2H), 7.43-7.37 (m, 7H), 7.32 (d, *J* = 8.7 Hz, 2H), 6.95-6.89 (m, 4H), 5.04 (d, *J* = 14.0 Hz, 2H), 4.97 (d, *J* = 14.0 Hz, 2H), 3.83 (s, 3H), 3.82 (s, 3H) ppm. ¹³C NMR (CDCl₃) δ 161.0 (s), 160.0 (s), 133.9 (d), 133.97(d), 133.3 (s), 130.8 (d), 130.5 (d), 130.3 (d), 129.1 (d), 128.9 (d), 128.8 (d), 128.5 (d), 128.3 (d), 125.1 (s), 123.3 (s), 114.3 (d), 113.7 (d), 70.6 (t, x2), 55.2 (q) ppm. IR (neat) 1611, 1513, 1303, 1250, 1176, 1030, 903, 724 cm⁻¹. MS (ES⁺): 242 [M+H]⁺. HRMS calcd for C₁₅H₁₆NO₂ [M+H]⁺ 242.1181, found 242.1171.

Compound 2i.⁴ Flash chromatography (CH₂Cl₂/MeOH, from 1:0 96:4, silica deactivated with aqueous NH₄OH). ¹H NMR (CDCl₃) δ 7.97 (dd, *J* = 7.3, 1.6 Hz, 2H), 7.49-7.38 (m, 3H), 7.30-7.22 (m, 3H), 7.06 (dd, *J* = 7.9, 1.6 Hz, 1H), 5.06 (d, *J* = 15.5 Hz, 1H), 4.60 (d, *J* = 15.5 Hz, 1H), 4.17-4.11 (m, 1H), 3.79-3.66 (m, 2H), 2.84 (dt, *J* = 16.4, 5.0 Hz, 1H) ppm. ¹³C NMR (CDCl₃) δ 131.1 (s), 129.9 (s), 129.1 (d), 129.0 (d), 128.5 (d), 127.5 (d), 126.7 (d), 126.2 (d), 120.5 (d), 71.3 (t), 65.5 (t), 26.2 (t) ppm. IR (neat) 1489, 903, 726 cm⁻¹. MS (ES⁺): 226 [M+H]⁺.

Ph O

Compound 2j. Could not be purified by chromatography, NMR provided for the crude. ¹H NMR (CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.31-7.21 (m, 4H), 7.14 (d, *J* = 8.0 Hz, 2H), 4.07 (t, *J* = 11.0 Hz, 2H), 3.35-3.30 (m, 2H), 2.67 (d, *J* = 8.4 Hz, 2H), 2.56-2.47 (m, 2H), 2.15 (m, 1H), 1.50-1.43 (m, 2H) ppm. MS (ES⁺): 268 [M+H]⁺. HRMS calcd for C₁₈H₂₂NO [M+H]⁺ 268.1701, found 268.1699.

Compound 3a.⁵ Flash chromatography (Pentane/EtOAc from 1:0 to 9:1). ¹H NMR (CDCl₃) δ 7.53-7.50 (m, 3H), 7.39-7.35 (m, 2H), 7.33-7.23 (m, 7H), 7.18-7.11 (m, 4H), 7.09 (td, *J* = 7.5, 1.5 Hz, 1H), 7.03 (td, *J* = 7.5, 1.5 Hz, 1H), 6.97 (dd, *J* = 7.5, 1.5 Hz, 1H), 5.24 (s, 1H), 4.65 (d, *J* = 13.0 Hz, 1H), 4.31 (d, *J* = 13.0 Hz, 1H), 3.43-3.35 (m, 1H), 3.22-3.15 (m, 1H), 3.12-3.05 (m, 1H), 2.97-2.90 (m, 1H) ppm. ¹³C NMR (CDCl₃) δ 147.8 (s), 141.3 (s), 140.9 (s), 138.9 (s), 136.1 (s), 132.4 (s), 130.9 (s), 129.9 (d), 129.6 (d), 129.3 (d), 128.5 (d), 128.4 (d, x2), 127.8 (d), 127.6 (d), 127.4 (d), 126.9 (d), 126.8 (d), 125.6 (d), 125.4 (d), 110.3 (s), 63.0 (s), 36.8 (t), 32.9 (t) ppm. IR (neat) 1502, 1382, 872, 735 cm⁻¹. MS (ES⁺): 416 [M+H]⁺.

N_O

Compound 3e. Flash chromatography (eluent Pentane/EtOAc from 1:0 to 94:6). ¹H NMR (CDCl₃) δ 7.42 (dd, *J* = 6.9, 1.8 Hz, 2H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.27-7.22 (m, 1H), 7.17-7.13 (m, 4H), 7.08 (dd, *J* = 7.3, 1.6 Hz, 1H), 7.05 (dd, *J* = 3.3, 1.7 Hz, 1H), 7.01 (dd, *J* = 7.3, 1.7 Hz, 1H), 6.97 (dd, *J* = 7.6, 1.9 Hz, 1H), 5.26 (s, 1H), 3.83 (quint, *J* = 6.6 Hz, 1H), 3.45-3.38 (m, 1H), 3.23-3.09 (m, 2H), 3.02-2.95 (m, 1H), 2.16-2.03 (m, 2H), 1.97-1.74 (m, 4H), 1.70-1.61 (m, 2H) ppm. ¹³C NMR (CDCl₃) δ 147.6 (s), 142.1 (s), 140.9 (s), 138.8 (s), 132.6 (s), 130.9 (d), 129.9 (d), 129.5 (d), 128.5 (d), 128.4 (d), 127.7 (d), 127.3 (d), 126.9 (d), 126.7 (d), 125.4 (d), 110.2 (s), 77.7 (d), 68.0 (d), 36.9 (t), 33.0 (t), 31.2 (t), 30.3 (t), 24.8 (t), 24.7 (t) ppm. IR (neat) 1674, 1493, 1451, 1029, 905, 729 cm⁻¹. MS (ES⁺): 394 [M+H]⁺. HRMS calcd for C₂₈H₂₈NO [M+H]⁺ 394.2171, found 394.2183.

5. References

- 1) C. Matassini, C. Parmeggiani, F. Cardona, A. Goti, Org. Lett. 2015, 17, 4082.
- 2) D. A. Evans, H. –J. Song, K. R. Fandrick, Org. Lett. 2006, 8, 3351.
- 3) C. Gella, E. Ferrer, R. Alibés, F. Busqué, P. March, M. Figueredo, J. Font, J. Org. Chem. 2009, 74, 6365.
- 4) H. Ueda, K. Yoshida, H. Tokuyama, Org. Lett. 2014, 16, 4194.
- 5) C. S. McKay, J. Moran, J. P. Pezacki, *Chem. Commun.* 2010, **46**, 931.

6. Copies of ¹H and ¹³C NMR Spectra

COMPOUND	2a					134.24 133.16 130.42	129.18	128.46					11.17							
			\bigcirc	< N − 0 −]														
												I								
					*****													angkangka Manakan gerapa di		
200	1 90	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	ppm

I .			an dite a second a data	ما بسر با محمد ا	ادب

