Theophylline as the catalyst for the diastereoselective synthesis of *trans*-1,2dihydrobenzo[*a*]furo[2,3-*c*]phenazines in water

Afshin Yazdani-Elah-Abadi,^a Razieh Mohebat^{b,*} and Malek-Taher Maghsoodlou^c

^a Young Researchers and Elite Club, Yazd Branch, Islamic Azad University, Yazd, Iran

^b Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran

^c Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P. O. Box: 98135-

674, Zahedan, Iran

Corresponding author: E-mail: mohebat@iauyazd.ac.ir

Table of contents

Experimental procedure	Page 2
Spectral data	Page 3-9
Copies of ¹ H, ¹³ C NMR and Mass spectra of compounds	Page 10-68

Experimental

General

All melting points were determined on an Electrothermal 9100 apparatus and are uncorrected. IR spectra were recorded on a shimadzu IR-470 spectrometer. Elemental analyses for C, H, and N were performed using a Costech ECS 4010 CHNS-O analyser at the analytical laboratory of Islamic Azad University Yazd branch. Mass spectra were recorded on an Agilent Technology (HP) spectrometer operating at an ionization potential of 70 eV. The ¹H nuclear magnetic resonance (NMR) and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-300 spectrometer operating at 300 MHz for ¹H analysis and 75 MHz for ¹³C analysis. Thin-layer chromatography (TLC) was performed on silica-gel Polygram SILG/UV 254 plates. All reagents and solvent were purchased from Merck and Aldrich and used without further purification.

General procedure for the synthesis of novel 1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazine derivatives (6a-p)

Initially, a mixture of 2-hydroxynaphthalene-1,4-dione 1 (1 mmol), benzene-1,2-diamine 2 (1 mmol), theophylline (20 mol%) and water (10 mL) was placed in a 50 mL round-bottomed flask mounted over a magnetic stirrer. The contents were stirred magnetically in an oil-bath maintained at 70°C until in less than 10 minutes benzo[a]phenazin-5-ol 3 was formed. Then, aryl aldehyde 4 (1 mmol) and 1-(2-(4-bromophenyl)-2-oxoethyl)pyridinium bromide 5 (1 mmol) were added to the above reaction mixture which was heated further at same temperature for an appropriate time as shown in Table 2. Upon completion of the reaction, monitored by TLC, the reaction mixture was allowed to cool to room temperature. Then, 5 mL of water was added to the mixture and filtered for separation of the crude product. The separated product was washed twice with water (2×5 mL). The solid crude product subsequently recrystallized from hot ethanol to give the pure product 6.

Spectral data

(4-Bromophenyl)(1-(4-chlorophenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (6a)

Yellow powder; yield 0.502 g (89%), mp 279-281 °C; IR (KBr): $v_{max} = 3045$, 2900, 1691, 1627, 1591, 1535, 1499, 1415, 1386, 1332, 1224, 1131, 1045, 978, 800, 759 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.46 (d, 1H, J = 4.2 Hz, CH), 6.10 (d, 1H, J = 4.2 Hz, CH), 7.22 (d, 2H, J = 8.4 Hz, Ar-H), 7.32 (d, 2H, J = 8.4 Hz, Ar-H), 7.59-7.67 (m, 4H, Ar-H), 7.78-7.83 (m, 4H, Ar-H), 7.89-7.92 (m, 1H, Ar-H), 8.15-8.20 (m, 2H, Ar-H), 9.32-9.35 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 50.1 and 91.9 (2CH), 115.4, 122.6, 123.9, 126.1, 128.6, 128.8, 128.9, 129.0, 129.2, 129.5, 129.7, 129.9, 130.0, 130.6, 132.3, 132.5, 133.2, 140.2, 140.4, 141.3, 141.5, 142.5 and 157.9 (C_{olefinic} and C_{arom}), 192.7 (C=O) ppm; MS (m/z, %): 565 (M⁺, 1), 448 (1), 381 (100), 246 (91), 185 (15), 43 (76); Anal. Calcd for C₃₁H₁₈BrClN₂O₂: C, 65.80; H, 3.21; N, 4.95 %. Found: C, 66.03; H, 3.46; N, 4.87 %.

(4-Bromophenyl)(1-(2-chlorophenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (6b)

Orange powder; yield 0.492 g (87%), mp 243-245 °C; IR (KBr): $v_{max} = 3035$, 2895, 1692, 1626, 1594, 1534, 1498, 1414, 1386, 1332, 1223, 1129, 1045, 978, 800, 759 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.11 (s, 2H, 2CH), 6.99-7.14 (m, 3H, Ar-H), 7.39 (d, 1H, J = 7.8 Hz, Ar-H), 7.60 (d, 2H, J = 8.7 Hz, Ar-H), 7.64-7.67 (m, 2H, Ar-H), 7.73-7.82 (m, 2H, Ar-H), 7.88 (d, 2H, J = 8.4 Hz, Ar-H), 7.93-7.96 (m, 1H, Ar-H), 8.08-8.11 (m, 1H, Ar-H), 8.17-8.21 (m, 1H, Ar-H), 9.33-9.36 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 46.6 and 90.9 (2CH), 115.3, 122.5, 124.0, 125.7, 126.1, 127.3, 128.5, 128.6, 128.8, 129.1, 129.3, 129.6, 129.7, 129.8, 129.9, 130.8, 131.4, 131.9, 132.2, 132.5, 132.9, 133.5, 139.3, 140.3, 141.2, 141.7, 142.7 and 158.1 (C_{olefinic} and C_{arom}), 191.9 (C=O) ppm; MS (m/z, %): 565 (M⁺, 1), 529 (1), 381 (100), 246 (9), 183 (11), 76 (4); Anal. Calcd for C₃₁H₁₈BrClN₂O₂: C, 65.80; H, 3.21; N, 4.95 %. Found: C, 65.93; H, 3.51; N, 5.10 %.

(4-Bromophenyl)(1-(2,4-dichlorophenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (6c)

Yellow powder; yield 0.534 g (89%), mp 256-257 °C; IR (KBr): $v_{\text{max}} = 3110, 2905, 1683, 1626, 1591, 1534, 1500, 1412, 1380, 1351, 1221, 1134, 1065, 978, 800, 761 cm⁻¹; ¹H NMR$

(300 MHz, DMSO-*d*₆): δ 5.92 (d, 1H, *J* = 3.9 Hz, CH), 6.74 (d, 1H, *J* = 3.9 Hz, CH), 7.16 (d, 1H, *J* = 8.4 Hz, Ar-H), 7.25 (dd, 1H, *J*₁ = 8.7 Hz, *J*₂ = 2.1 Hz, Ar-H), 7.73 (d, 1H, *J* = 2.1 Hz, Ar-H), 7.84-7.89 (m, 4H, Ar-H), 7.94-8.02 (m, 3H, Ar-H), 8.05 (d, 2H, *J* = 8.7 Hz, Ar-H), 8.13-8.16 (m, 1H, Ar-H), 8.28-8.32 (m, 1H, Ar-H), 9.31-9.34 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, DMSO-*d*₆): δ 49.3 and 90.4 (2CH), 114.9, 122.9, 123.7, 126.1, 128.3, 128.8, 129.0, 129.3, 129.8, 131.1, 131.2, 131.7, 132.1, 132.6, 133.0, 133.2, 134.0, 138.2, 140.0, 140.9, 141.5, 142.3 and 158.5 (C_{olefinic} and C_{arom}), 193.2 (C=O) ppm; MS (*m*/*z*, %): 600 (M⁺, 1), 523 (1), 415 (100), 352 (16), 182 (20), 57 (14); Anal. Calcd for C₃₁H₁₇BrCl₂N₂O₂: C, 62.03; H, 2.85; N, 4.67 %. Found: C, 62.27; H, 2.64; N, 4.76 %.

(4-Bromophenyl)(1-(4-nitrophenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (6d)

Yellow powder; yield 0.516 g (90%), mp 283-285 °C; IR (KBr): $v_{max} = 3025$, 2905, 1689, 1624, 1593, 1532, 1507, 1447, 1393, 1336, 1223, 1132, 1046, 941, 803, 754 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.72 (d, 1H, J = 4.8 Hz, CH), 6.10 (d, 1H, J = 4.8 Hz, CH), 7.56-7.70 (m, 7H, Ar-H), 7.78-7.83 (m, 2H, Ar-H), 7.86-7.89 (m, 3H, Ar-H), 8.11-8.14 (m, 3H, Ar-H), 9.34-9.37 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 50.5 and 90.6 (2CH), 115.3, 122.3, 124.0, 125.5, 127.3, 128.0, 128.5, 128.7, 129.1, 129.5, 129.7, 130.0, 130.1, 130.2, 130.3, 131.6, 132.5, 132.9, 133.5, 139.3, 140.3, 141.4, 141.5, 142.5, and 157.5 (C_{olefinic} and C_{arom}), 192.6 (C=O) ppm; MS (*m/z*, %): 576 (M⁺, 1), 530 (1), 384 (2), 344 (48), 271 (68), 57 (100); Anal. Calcd for C₃₁H₁₈BrN₃O₄: C, 64.60; H, 3.15; N, 7.29 %. Found: C, 64.48; H, 3.37; N, 7.53 %.

(4-bromophenyl)(1-(2-hydroxy-5-nitrophenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2-yl)methanone (6e)

Green powder; yield 0.503 g (85%), mp 156-157 °C; IR (KBr): $v_{max} = 3050, 2910, 1688, 1632, 1591, 1527, 1500, 1415, 1386, 1336, 1224, 1152, 1063, 948, 811, 754 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 5.74 (d, 1H, J = 4.8 Hz, CH), 6.13 (d, 1H, J = 4.5 Hz, CH), 7.43 (t, 1H, J = 7.8 Hz, Ar-H), 7.60-7.67 (m, 3H, Ar-H), 7.75-7.84 (m, 3H, Ar-H), 7.86-7.90 (m, 3H, Ar-H), 8.03-8.06 (m, 1H, Ar-H), 8.12-8.19 (m, 2H, Ar-H), 8.30 (t, 1H, J = 2.1 Hz, Ar-H), 9.32-9.35 (m, 1H, Ar-H), 10.80 (s, 1H, OH) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 49.7 and 91.6 (2CH), 114.8, 122.5, 122.7, 123.1, 126.1, 128.7, 129.1, 129.7, 129.8, 130.0, 130.7, 130.9, 131.2, 131.5, 131.6, 132.3, 132.6, 134.2, 137.2, 138.5, 140.2, 141.4, 141.9, 143.9 and 157.8

(C_{olefinic} and C_{arom}), 192.4 (C=O) ppm; MS (*m/z*, %): 592 (M⁺, 1), 575 (2), 415 (100), 345 (22), 182 (49), 57 (92); Anal. Calcd for C₃₁H₁₈BrN₃O₅: C, 62.85; H, 3.06; N, 7.09 %. Found: C, 62.63; H, 3.15; N, 7.26 %.

(4-Bromophenyl)(1-(thiophen-2-yl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2-yl)methanone (6f)

Brown powder; yield 0.431 g (80%), mp 160 °C; IR (KBr): $v_{max} = 3050, 2895, 1687, 1629, 1579, 1524, 1489, 1412, 1386, 1330, 1219, 1133, 1063, 973, 834, 750 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 5.79 (d, 1H, J = 3.9 Hz, CH), 6.21 (d, 1H, J = 3.9 Hz, CH), 7.87-8.89 (m, 1H, Ar-H), 7.05 (d, 1H, J = 3.3 Hz, Ar-H), 7.11 (d, 1H, J = 4.8 Hz, Ar-H), 7.60-7.68 (m, 5H, Ar-H), 7.76-8.79 (m, 2H, Ar-H), 7.89 (d, 1H, J = 8.4 Hz, Ar-H), 7.95-7.98 (m, 1H, Ar-H), 8.14-8.19 (m, 2H, Ar-H), 9.30-9.34 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 45.6 and 91.8 (2CH), 115.0, 122.7, 123.9, 124.7, 125.4, 126.0, 127.1, 128.5, 128.8, 128.9, 129.5, 129.6, 129.7, 129.8, 129.9, 130.7, 132.0, 132.3, 132.5, 132.6, 140.2, 141.3, 141.6, 142.5, 145.0, and 157.8 (C_{olefinic} and C_{arom}), 192.5 (C=O) ppm; MS (m/z, %): 537 (M⁺, 1), 426 (2), 353 (100), 246 (18), 183 (14), 76 (5); Anal. Calcd for C₂₉H₁₇BrN₂O₂S: C, 64.81; H, 3.19; N, 5.21; S, 5.97 %. Found: C, 65.06; H, 3.26; N, 5.30; S, 5.82 %.

(4-bromophenyl)(1-(*p*-tolyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2-yl)methanone (6g)

Green powder; yield 0.441 g (81%), mp 260-263 °C; IR (KBr): $v_{max} = 3045$, 2900, 1684, 1633, 1594, 1533, 1500, 1416, 1382, 1331, 1222, 1130, 1063, 978, 828, 749 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.27 (s, 3H, CH₃), 5.37 (d, 1H, J = 3.9 Hz, CH), 6.15 (d, 1H, J = 4.2 Hz, CH), 7.06 (d, 2H, J = 7.8 Hz, Ar-H), 7.29 (d, 2H, J = 7.8 Hz, Ar-H), 7.58-7.66 (m, 4H, Ar-H), 7.77-7.82 (m, 4H, Ar-H), 7.89-7.94 (m, 1H, Ar-H), 8.15-8.22 (m, 2H, Ar-H), 9.32-9.35 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 21.1 (CH₃), 50.6 and 92.2 (2CH), 116.0, 122.6, 124.1, 126.0, 127.7, 128.4, 128.7, 128.8, 129.3, 129.6, 129.7, 129.8, 129.9, 130.6, 132.2, 132.5, 132.6, 137.1, 138.9, 140.2, 141.3, 141.8, 142.5 and 157.9 (C_{olefinic} and C_{arom}), 192.9 (C=O) ppm; MS (*m*/*z*, %): 545 (M⁺, 1), 466 (2), 361 (100), 270 (5), 183 (9), 57 (3); Anal. Calcd for C₃₂H₂₁BrN₂O₂: C, 70.47; H, 3.88; N, 5.14 %. Found: C, 70.71; H, 3.69; N, 5.22 %.

(4-Bromophenyl)(1-(4-methoxyphenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (6h)

Brown powder; yield 0.566 g (83%), mp 180-181 °C; IR (KBr): $v_{max} = 3025$, 2895, 1688, 1628, 1583, 1531, 1507, 1410, 1390, 1330, 1223, 1133, 1061, 948, 820, 750 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.68 (s, 3H, OCH₃), 5.35 (d, 1H, J = 3.9 Hz, CH), 6.12 (d, 1H, J = 4.2 Hz, CH), 6.77 (d, 2H, J = 8.4 Hz, Ar-H), 7.30 (d, 2H, J = 8.7 Hz, Ar-H), 7.53-7.62 (m, 4H, Ar-H), 7.67-7.80 (m, 5H, Ar-H), 8.12-8.19 (m, 2H, Ar-H), 9.29-9.32 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 50.3 (CH), 55.2 (OCH₃), 92.2 (CH), 114.2, 116.0, 122.6, 124.0, 126.0, 128.4, 128.7, 128.8, 128.9, 129.3, 129.6, 129.7, 129.9, 130.6, 132.2, 132.4, 132.5, 134.0, 140.1, 141.3, 141.8, 142.5 and 158.8 (C_{olefinic} and C_{arom}), 193.0 (C=O) ppm; MS (m/z, %): 561 (M⁺, 1), 425 (1), 377 (100), 246 (20), 183 (12), 76 (4); Anal. Calcd for C₃₂H₂₁BrN₂O₃: C, 68.46; H, 3.77; N, 4.99 %. Found: C, 68.57; H, 3.96; N, 5.18 %.

(4-Bromophenyl)(1-(3,4-dimethoxyphenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (6i)

Brown powder; yield 0.460 g (78%), mp 162-164 °C; IR (KBr): $v_{max} = 3040$, 2910, 1688, 1629, 1594, 1551, 1512, 1415, 1386, 1331, 1223, 1137, 1048, 948, 800, 752 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.76 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 5.37 (d, 1H, J = 4.2 Hz, CH), 6.18 (d, 1H, J = 4.2 Hz, CH), 6.73 (d, 1H, J = 8.4 Hz, Ar-H), 6.91 (dd, 1H, $J_1 = 8.1$ Hz, $J_2 = 1.8$ Hz, Ar-H), 6.99 (d, 1H, J = 1.8 Hz, Ar-H), 7.58-7.67 (m, 4H, Ar-H), 7.77-8.84 (m, 4H, Ar-H), 7.89-7.93 (m, 1H, Ar-H), 8.16-8.21 (m, 2H, Ar-H), 9.32-9.35 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 50.6 (CH), 55.8 and 56.0 (2OCH₃), 92.1 (CH), 111.4, 111.5, 115.8, 119.7, 122.6, 124.0, 126.0, 128.4, 128.7, 129.4, 129.7, 129.8, 129.9, 130.6, 131.7, 131.9, 132.2, 132.4, 132.5, 134.4, 140.1, 141.3, 141.8, 142.5, 148.3, 149.0 and 157.8 (C_{olefinic} and C_{arom}), 193.0 (C=O) ppm; MS (m/z, %): 591 (M⁺, 1), 454 (1), 407 (100), 345 (13), 182 (23), 57 (11); Anal. Calcd for C₃₃H₂₃BrN₂O₄: C, 67.01; H, 3.92; N, 4.74 %. Found: C, 67.19; H, 3.85; N, 4.90 %.

(4-Bromophenyl)(1-(2-hydroxy-3-methoxyphenyl)-1,2-dihydrobenzo[*a*]furo[2,3*c*]phenazin-2-yl)methanone (6j)

Orange powder; yield 0.458 g (79%), mp 251-252 °C; IR (KBr): $v_{\text{max}} = 3025$, 2900, 1674, 1620, 1581, 1524, 1468, 1416, 1392, 1337, 1220, 1133, 1063, 979, 809, 753 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 3.82 (s, 3H, OCH₃), 5.67 (d, 1H, J = 3.0 Hz, CH), 6.55 (d, 1H, J = 3.0

Hz, CH), 6.74-6.77 (m, 1H, Ar-H), 6.85 (t, 1H, J = 7.8 Hz, Ar-H), 7.07 (d, 1H, J = 6.9 Hz, Ar-H), 7.55 (d, 2H, J = 8.4 Hz, Ar-H), 7.66-7.82 (m, 6H, Ar-H), 8.15-8.21 (m, 3H, Ar-H), 9.25-9.28 (m, 1H, Ar-H), 10.12 (s, 1H, OH) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 44.0 (CH), 56.0 (OCH₃), 90.3 (CH), 111.0, 116.1, 118.1, 121.5, 122.7, 124.1, 126.0, 127.5, 128.7, 129.0, 129.4, 129.8, 129.9, 130.2, 130.3, 130.7, 131.8, 132.1, 132.4, 140.3, 140.6, 141.9, 143.8, 150.5 and 158.5 (C_{olefinic} and C_{arom}), 192.4 (C=O) ppm; MS (*m*/*z*, %): 577 (M⁺, 1), 407 (1), 358 (96), 285 (100), 142 (6), 89 (4); Anal. Calcd for C₃₂H₂₁BrN₂O₄: C, 66.56; H, 3.67; N, 4.85 %. Found: C, 66.78; H, 3.90; N, 4.89 %.

(4-bromophenyl)(1-(4-chlorophenyl)-11-methyl-1,2-dihydrobenzo[*a*]furo[2,3*c*]phenazin-2-yl)methanone (6k)

Yellow powder; yield 0.504 g (87%), mp 307-309 °C; IR (KBr): $v_{max} = 3025$, 2910, 1690, 1624, 1593, 1530, 1501, 1405, 1352, 1315, 1225, 1132, 1047, 1003, 817, 761 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.54 (s, 3H, CH₃), 5.45 (d, 1H, J = 4.2 Hz, CH), 6.08 (d, 1H, J = 4.2 Hz, CH), 7.22 (d, 2H, J = 8.4 Hz, Ar-H), 7.32 (d, 2H, J = 8.4 Hz, Ar-H), 7.49 (dd, 1H, $J_1 = 8.7$ Hz, $J_2 = 1.8$ Hz, Ar-H), 7.61 (d, 2H, J = 8.4 Hz, Ar-H), 7.76-7.83 (m, 5H, Ar-H), 7.95 (s, 1H, Ar-H), 8.14-8.17 (m, 1H, Ar-H), 9.29-9.33 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 21.9 (CH₃), 50.1 and 91.9 (2CH), 115.4, 122.6, 126.0, 128.2, 128.3, 128.4, 128.7, 129.0, 129.2, 129.4, 129.8, 130.6, 131.1, 132.3, 132.5, 132.6, 133.2, 135.0, 137.1, 137.2, 139.2, 140.5, 141.0, 157.4 and 157.7 (C_{olefinic} and C_{arom}), 192.8 (C=O) ppm; MS (m/z, %): 579 (M⁺, 1), 439 (1), 395 (27), 260 (100), 130 (12), 57 (14); Anal. Calcd for C₃₂H₂₀BrClN₂O₂: C, 66.28; H, 3.48; N, 4.83 %. Found: C, 66.45; H, 3.51; N, 4.98 %.

(4-bromophenyl)(11-methyl-1-(4-nitrophenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2-yl)methanone (6l)

Yellow powder; yield 0.511 g (87%), mp 296-297 °C; IR (KBr): $v_{max} = 3045$, 2900, 1690, 1629, 1594, 1563, 1508, 1480, 1391, 1330, 1226, 1144, 1062, 943, 820, 761 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.51 (s, 3H, CH₃), 5.72 (d, 1H, J = 4.5 Hz, CH), 6.07 (d, 1H, J = 4.5 Hz, CH), 7.49-7.64 (m, 6H, Ar-H), 7.76-7.88 (m, 5H, Ar-H), 8.09-8.13 (m, 3H, Ar-H), 9.32-9.35 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 21.7 (CH₃), 51.2 and 90.4 (2CH), 110.9, 115.9, 118.1, 121.5, 122.8, 124.1, 126.1, 127.4, 128.8, 129.0, 129.4, 129.7, 129.9, 130.2, 130.4, 130.6, 131.8, 132.0, 132.4, 140.2, 140.6, 141.8, 143.9, 150.6 and 158.4 (C_{olefinic} and C_{arom}), 192.3 (C=O) ppm; MS (*m*/*z*, %): 590 (M⁺, 1), 406 (100), 360 (20), 284 (7), 184

(16), 57 (20); Anal. Calcd for C₃₂H₂₀BrN₃O₄: C, 65.10; H, 3.41; N, 7.12 %. Found: C, 65.33; H, 3.52; N, 7.01 %.

(4-Bromophenyl)(11-methyl-1-(*p*-tolyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (6m)

Brown powder; yield 0.449 g (80%), mp 205-207 °C; IR (KBr): $v_{max} = 2995$, 2910, 1692, 1631, 1595, 1532, 1502, 1479, 1396, 1331, 1223, 1147, 1049, 950, 820, 758 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.33 (s, 3H, CH₃), 2.57 (s, 3H, CH₃), 5.48 (d, 1H, J = 4.2 Hz, CH), 6.23 (d, 1H, J = 3.9 Hz, CH), 7.16 (d, 2H, J = 7.2 Hz, Ar-H), 7.38 (d, 2H, J = 7.8 Hz, Ar-H), 7.53-7.58 (m, 2H, Ar-H), 7.68 (d, 2H, J = 8.4 Hz, Ar-H), 7.82-8.82 (m, 5H, Ar-H), 8.27-8.30 (m, 1H, Ar-H), 9.37-9.41 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 21.1 and 21.9 (2CH₃), 50.6 and 92.1 (2CH), 116.0, 122.5, 123.8, 125.8, 125.9, 127.4, 127.7, 128.1, 128.3, 128.5, 128.6, 129.1, 129.3, 129.6, 129.7, 130.6, 131.0, 132.2, 132.3, 132.5, 137.0, 138.8, 139.0, 140.3, 141.1, 142.6, 157.4 and 157.7 (C_{olefinic} and C_{arom}), 193.0 (C=O) ppm; MS (m/z, %): 559 (M⁺, 1), 440 (2), 375 (100), 260 (20), 183 (10), 57 (3); Anal. Calcd for C₃₃H₂₃BrN₂O₂: C, 70.85; H, 4.14; N, 5.01 %. Found: C, 70.77; H, 3.37; N, 5.25 %.

(4-Bromophenyl)(1-(4-chlorophenyl)-10-nitro-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2-yl)methanone (6n)

Yellow powder; yield 0.518 g (85%), mp 275-277 °C; IR (KBr): $v_{max} = 3055$, 2900, 1684, 1625, 1590, 1551, 1514, 1415, 1388, 1332, 1220, 1125, 1046, 1005, 818, 761 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 5.43 (d, 1H, J = 4.5 Hz, CH), 6.16 (d, 1H, J = 4.5 Hz, CH), 7.23-7.35 (m, 4H, Ar-H), 7.63 (d, 2H, J = 8.7 Hz, Ar-H), 7.80-7.88 (m, 4H, Ar-H), 8.00 (d, 1H, J = 9.3 Hz, Ar-H), 8.19-8.22 (m, 1H, Ar-H), 8.40 (dd, 1H, $J_1 = 8.7$ Hz, $J_2 = 2.4$ Hz, Ar-H), 9.11 (d, 1H, J = 2.4 Hz, Ar-H), 9.31-9.35 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 49.8 and 92.2 (2CH), 115.6, 122.9, 123.1, 126.4, 126.5, 128.6, 128.8, 128.9, 129.0, 129.1, 129.2, 129.8, 130.2, 130.6, 131.0, 132.4, 132.5, 139.8, 140.4, 141.3, 141.5, 142.5 and 157.9 (C_{olefinic} and C_{arom}), 192.2 (C=O) ppm; MS (m/z, %): 610 (M⁺, 1), 551 (1), 426 (53), 291 (100), 182 (23), 43 (44); Anal. Calcd for C₃₁H₁₇BrClN₃O₄: C, 60.95; H, 2.81; N, 6.88 %. Found: C, 70.19; H, 2.88; N, 6.98 %.

(4-bromophenyl)(10-nitro-1-(4-nitrophenyl)-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2yl)methanone (60)

Yellow powder; yield 0.544 g (88%), mp 312-314 °C; IR (KBr): $v_{max} = 3070, 2910, 1688, 1629, 1589, 1552, 1510, 1412, 1386, 1337, 1225, 1141, 1046, 979, 822, 762 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 5.69 (d, 1H, J = 4.5 Hz, CH), 6.16 (d, 1H, J = 4.5 Hz, CH), 7.53-7.59 (m, 2H, Ar-H), 7.65 (d, 2H, J = 8.7 Hz, Ar-H), 7.88-7.89 (m, 4H, Ar-H), 8.13-8.20 (m, 3H, Ar-H), 8.33 (d, 1H, J = 9.3 Hz, Ar-H), 8.42 (dd, 1H, $J_1 = 9.3$ Hz, $J_2 = 2.4$ Hz, Ar-H), 8.80 (d, 1H, J = 2.4 Hz, Ar-H), 9.34-9.37 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 51.1 and 90.5 (2CH), 113.8, 115.8, 122.2, 123.4, 125.3, 125.5, 127.1, 128.1, 129.2, 130.3, 130.4, 130.9, 131.0, 132.2, 133.0, 133.5, 137.3, 139.9, 140.2, 141.1, 141.7, 143.0 and 157.3 (C_{olefinic} and C_{arom}), 191.7 (C=O) ppm; MS (m/z, %): 621 (M⁺, 1), 577 (2), 437 (17), 375 (65), 184 (33), 43 (100); Anal. Calcd for C₃₁H₁₇BrN₄O₆: C, 59.92; H, 2.76; N, 9.02 %. Found: C, 60.11; H, 2.59; N, 8.90 %.

(4-bromophenyl)(1-(2-chlorophenyl)-10-nitro-1,2-dihydrobenzo[*a*]furo[2,3-*c*]phenazin-2-yl)methanone (6p)

Yellow powder; yield 0.521 g (85%), mp 300 °C; IR (KBr): $v_{max} = 3030$, 2900, 1686, 1627, 1583, 1526, 1493, 1409, 1386, 1333, 1223, 1145, 1048, 1004, 808, 757 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 6.07 (d, 1H, J = 4.2 Hz, CH), 6.18 (d, 1H, J = 4.2 Hz, CH), 7.06-7.14 (m, 3H, Ar-H), 7.34 (d, 1H, J = 7.8 Hz, Ar-H), 7.62 (d, 2H, J = 8.4 Hz, Ar-H), 7.83-7.88 (m, 4H, Ar-H), 8.14-8.17 (m, 1H, Ar-H), 8.32 (d, 1H, J = 9.3 Hz, Ar-H), 8.40 (dd, 1H, $J_1 = 9.3$ Hz, $J_2 = 2.4$ Hz, Ar-H), 8.83 (d, 1H, J = 2.4 Hz, Ar-H), 9.34-9.37 (m, 1H, Ar-H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 50.3 and 91.3 (2CH), 113.9, 122.9, 125.2, 125.3, 127.1, 127.2, 128.1, 128.2, 128.9, 129.0, 129.1, 129.6, 129.7, 129.9, 131.6, 132.2, 132.8, 132.9, 140.1, 140.5, 141.4, 141.5, 142.8 and 156.9 (C_{olefinic} and C_{arom}), 192.5 (C=O) ppm; MS (m/z, %): 610 (M⁺, 1), 572 (1), 426 (100), 316 (20), 182 (20), 76 (6); Anal. Calcd for C₃₁H₁₇BrClN₃O₄: C, 60.95; H, 2.81; N, 6.88 %. Found: C, 61.12; H, 2.94; N, 6.71 %.

Figure 1: ¹H NMR spectrum of compound 6a (300 MHz, CDCl₃).

Figure 2: ¹³C NMR spectrum of compound 6a (75 MHz, CDCl₃).

Figure 3: Expanded ¹³C NMR spectrum of compound 6a (75 MHz, CDCl₃).

Figure 4: Mass spectrum of compound 6a.

Figure 5: ¹H NMR spectrum of compound 6b (300 MHz, CDCl₃).

Figure 6: ¹³C NMR spectrum of compound 6b (75 MHz, CDCl₃).

Figure 7: Expanded ¹³C NMR spectrum of compound 6b (75 MHz, CDCl₃).

Figure 8: Mass spectrum of compound 6b.

Figure 9: ¹H NMR spectrum of compound 6c (300 MHz, DMSO).

Figure 10: ¹³C NMR spectrum of compound 6c (75 MHz, DMSO).

Figure 11: Expanded ¹³C NMR spectrum of compound 6c (75 MHz, CDCl₃).

Figure 12: Mass spectrum of compound 6c.

Figure 12: ¹H NMR spectrum of compound 6d (300 MHz, CDCl₃).

Figure 14: ¹³C NMR spectrum of compound 6d (75 MHz, CDCl₃).

Figure 15: Mass spectrum of compound 6d.

Figure 16: ¹H NMR spectrum of compound 6e (300 MHz, CDCl₃).

Figure 17: ¹³C NMR spectrum of compound 6e (75 MHz, CDCl₃).

Figure 18: Expanded ¹³C NMR spectrum of compound 6e (75 MHz, CDCl₃).

Figure 19: Mass spectrum of compound 6e.

Figure 20: ¹H NMR spectrum of compound 6f (300 MHz, CDCl₃).

Figure 21: ¹³C NMR spectrum of compound 6f (75 MHz, CDCl₃).

Figure 22: Expanded ¹³C NMR spectrum of compound 6f (75 MHz, CDCl₃).

Figure 23: Mass spectrum of compound 6f.

Figure 24: ¹H NMR spectrum of compound 6g (300 MHz, CDCl₃).

Figure 25: ¹³C NMR spectrum of compound 6g (75 MHz, CDCl₃).

Figure 26: Expanded ¹³C NMR spectrum of compound 6g (75 MHz, CDCl₃).

Figure 27: Mass spectrum of compound 6g.

Figure 28: ¹H NMR spectrum of compound 6h (300 MHz, CDCl₃).

Figure 29: ¹³C NMR spectrum of compound 6h (75 MHz, CDCl₃).

Figure 30: Expanded ¹³C NMR spectrum of compound 6h (75 MHz, CDCl₃).

Abundance

Figure 31: Mass spectrum of compound 6h.

Figure 32: ¹H NMR spectrum of compound 6i (300 MHz, CDCl₃).

Figure 33: ¹³C NMR spectrum of compound 6i (75 MHz, CDCl₃).

Figure 34: Expanded ¹³C NMR spectrum of compound 6i (75 MHz, CDCl₃).

Figure 35: Mass spectrum of compound 6i.

Figure 36: ¹H NMR spectrum of compound 6j (300 MHz, CDCl₃).

Figure 37: ¹³C NMR spectrum of compound 6j (75 MHz, CDCl₃).

Figure 38: Expanded ¹³C NMR spectrum of compound 6j (75 MHz, CDCl₃).

Figure 39: Mass spectrum of compound 6j.

Figure 40: ¹H NMR spectrum of compound 6k (300 MHz, CDCl₃).

Figure 41: ¹³C NMR spectrum of compound 6k (75 MHz, CDCl₃).

Figure 42: Expanded ¹³C NMR spectrum of compound 6k (75 MHz, CDCl₃).

Figure 43: Mass spectrum of compound 6k.

Figure 44: ¹H NMR spectrum of compound 6l (300 MHz, CDCl₃).

Figure 45: ¹³C NMR spectrum of compound 6l (75 MHz, CDCl₃).

Figure 46: Mass spectrum of compound 6l.

Figure 47: ¹H NMR spectrum of compound 6m (300 MHz, CDCl₃).

Figure 48: ¹³C NMR spectrum of compound 6m (75 MHz, CDCl₃).

Figure 49: Expanded ¹³C NMR spectrum of compound 6m (75 MHz, CDCl₃).

Abundance

Figure 50: Mass spectrum of compound 6m.

Figure 51: ¹H NMR spectrum of compound 6n (300 MHz, CDCl₃).

Figure 52: ¹³C NMR spectrum of compound 6n (75 MHz, CDCl₃).

Figure 53: Mass spectrum of compound 6n.

Figure 54: ¹H NMR spectrum of compound 60 (300 MHz, CDCl₃).

Figure 55: ¹³C NMR spectrum of compound 60 (75 MHz, CDCl₃).

Figure 56: Mass spectrum of compound 60.

Figure 57: ¹H NMR spectrum of compound 6p (300 MHz, CDCl₃).

Figure 58: ¹³C NMR spectrum of compound 6p (75 MHz, CDCl₃).

Abundance

Figure 59: Mass spectrum of compound 6p.