Supporting Information

Hydrogenated Hematite Nanostructures for High-Efficiency Solar Water Oxidation

Litao Zhou,[†] Xiaolin Lv, [†] Yuting Nie, Jiujun Deng, Hui Zhang, Xuhui Sun, *and Jun Zhong*

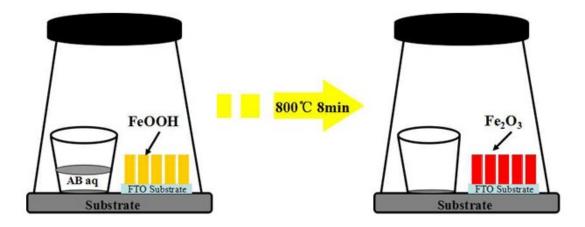


Figure S1: Experimental setup for the preparation of the AB-treated hematite.

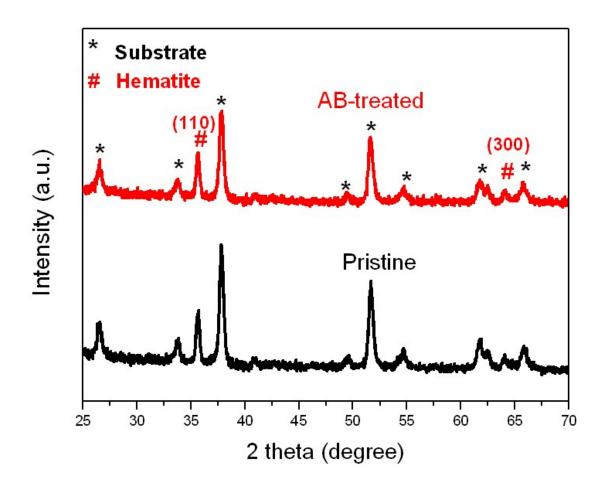
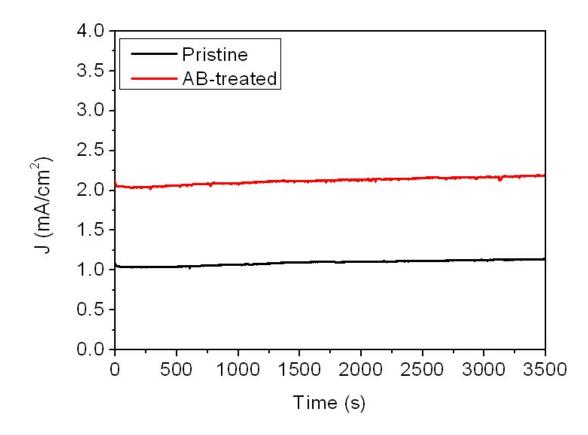



Figure S2: XRD spectra of the pristine and AB-treated hematite nanostructures.

Figure S3: Photochemical stability curves of the pristine and AB-treated hematite photoanodes collected at 1.23 V vs. RHE.

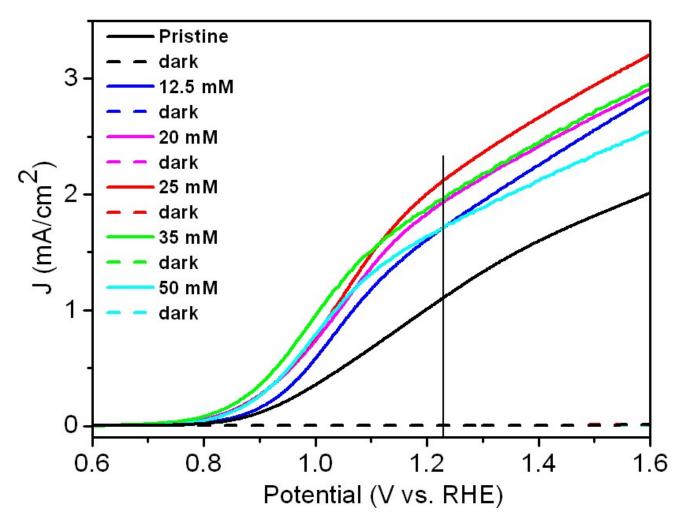


Figure S4: *J-V* scans of the AB-treated hematite photoanodes at various AB concentrations.

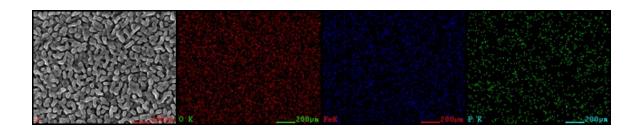
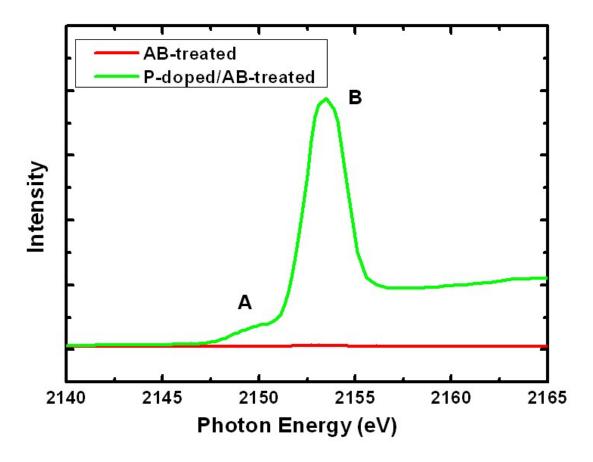
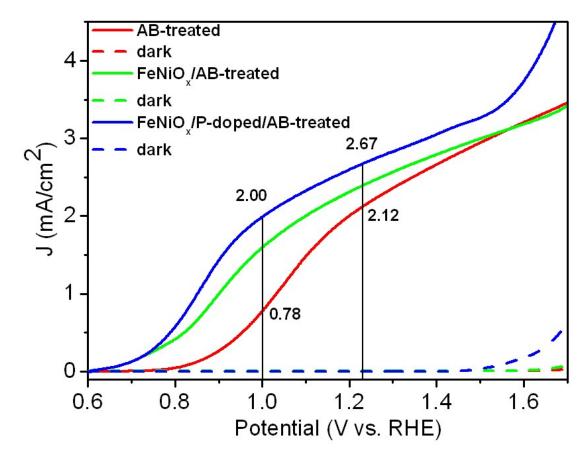




Figure S5: SEM image and the corresponding elemental mappings of the P-doped/AB-treated hematite

photoanode. P mapping clearly confirms the P-doping in hematite.

Figure S6: P *K*-edge XAS spectra of the AB-treated and P-doped/AB-treated hematite photoanodes. The spectrum of the P-doped/AB-treated sample indicates the P-doping. The small pre-peak A clearly reveals the existence of $FePO_4$ in the sample.

Figure S7: *J-V* scans of the AB-treated, $FeNiO_x/AB$ -treated and $FeNiO_x/P$ -doped/AB-treated hematite photoanodes.

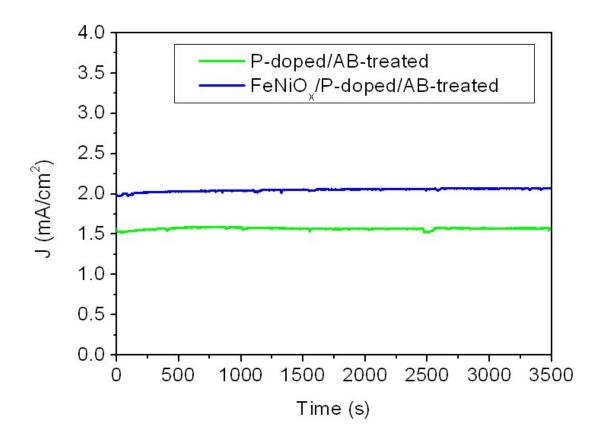
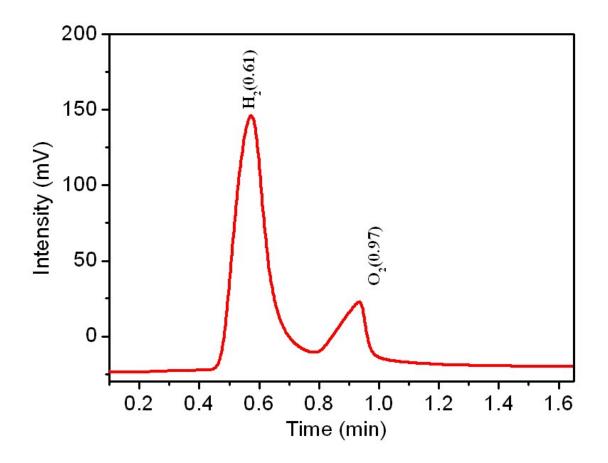



Figure S8: Photochemical stability curves of the P-doped/AB-treated and FeNiO_x/ P-doped/AB-treated hematite photoanodes collected at 1.0 V vs. RHE.

Figure S9: Final product detection using a gas chromatograph (GC7890T system, using N_2 as carrier gas and the TCD temperature was set to be 130 °C). H₂ and O₂ can be clearly detected confirming the product.

Sample description	Preparation method	Further modifications	Photocurrent (mA/cm ²) at 1.0 V vs. RHE	Journal and year
3D-Fe ₂ O ₃ nanocore	Ultrasonic spray pyrolysis	Ti-doping/Au layer/Co-Pi catalyst	2.6	Energy Environ. Sci. 2014, Ref. 21
Fe ₂ O ₃	Hydrothermal method	Pt-doping/Co-Pi catalyst	2.3	Sci. Rep. 2013, Ref. 33
Hydrogenated- Fe ₂ O ₃	Hydrothermal method	P-doping/FeNiO _x catalyst	2.0	This work
3D-Fe ₂ O ₃ nanospiked array	Ultrasonic spray pyrolysis	Ti-doping/Co-Pi catalyst	2.0	Nano Lett. 2014, Ref. 20
1D Fe ₂ O ₃ grown on 3D Sb-doped SnO ₂	Hydrothermal method	TiO ₂ layer/Co-Pi catalyst	2.0	Adv. Sci. 2015, Ref. 34
Fe ₂ O ₃	Deposition-annealing process	Ti-doping	1.75	Nano Lett. 2011, Ref. 17
Fe ₂ O ₃	Hydrothermal method	P-doping/Co-Pi catalyst	1.6	Energy Environ. Sci. 2015, Ref. 15
Fe ₂ O ₃	APCVD	Al ₂ O ₃ layer/FeNiO _x catalyst	1.5	J. Am. Chem. Soc. 2015, Ref. 14
Fe ₂ O ₃	APCVD	IrO ₂ catalyst	1.2	Angew. Chem., Int. Ed. 2010, Ref. 5
Re-growth Fe ₂ O ₃	Hydrothermal method	FeNiO _x catalyst	1.05	Nat. Commun. 2015, Ref. 3
Fe ₂ O ₃	APCVD	Co-Pi catalyst	1.0	Energy Environ. Sci. 2011, Ref. 4
Fe ₂ O ₃	Electrochemical deposition	Sn-doping/Co ²⁺ catalyst	1.0	J. Mater. Chem. A 2015, Ref. 35
Fe ₂ O ₃	Hydrothermal method	Sn and Zr codoping/ NiOOH catalyst	1.0	J. Mater. Chem. A. 2015, Ref. 36
Fe ₂ O ₃	Hydrothermal method	Carbon coating	0.9	Energy Environ. Sci. 2013, Ref. 22
Fe ₂ O ₃	Hydrothermal method		0.8	Nano Lett. 2011, Ref. 11
Fe ₂ O ₃	Hydrothermal method and		0.8	ACS Appl. Mater.
	hybrid microwave annealing			Interfaces 2015, Ref. 26
Fe ₂ O ₃	Hydrothermal method	Ti-doping/Ni(OH) ₂ and IrO ₂ cocatalyst	0.8	J. Phys. Chem. C 2015, Ref. 37
Fe ₂ O ₃ grown on patterned FTO	Hydrothermal method		0.7	J. Mater. Chem. A 2015, Ref. 38
Fe ₂ O ₃	Hydrothermal method	Fe _x Sn _{1-x} O ₄ layer	0.65	Chem. Sci. 2013, Ref. 39
Fe ₂ O ₃ grown on Si nanowire	Atomic layer deposition		0.63	J. Am. Chem. Soc. 2012,
array				Ref. 40
Fe ₂ O ₃ Nanoflake array (1D)	Thermal oxidation of iron foil	Au decoration	0.5	ChemSusChem 2015, Ref. 41
Fe ₂ O ₃ with oxygen vacancies	Hydrothermal method		0.2	Angew. Chem., Int. Ed. 2012, Ref. 18

Table S1: Comparison of the photocurrent densities of hematite photoanodes at 1.0 V vs. RHE.