Supplementary information

Versatile Surface Charge-Mediated Anti-Fouling UF/MF Membrane Comprising Charged Hyperbranched Polyglycerols (HPGs) and PVDF Membranes

Sung Yong Park, Ye Ji Kim, and Seung-Yeop Kwak*

¹Department of Materials Science and Engineering, Seoul National University,

599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea

*Corresponding Author:

S.-Y. Kwak (Tel: +82-2-880-8365, Fax: +82-2-885-9671, E-mail: sykwak@snu.ac.kr)

Synthesis of N,N-dibenzyl tris(hydroxymethyl) aminomethane (Bz2THAM)

Tris(hydroxymethyl) aminomethane (THAM) was reacted with benzyl bromide to synthesize the benzyl protected three armed initiator i.e., Bz₂THAM, which protected the amino functional group during anionic polymerization. The Bz2THAM was synthesized following description. The benzyl bromide (34 g, 0.2 mol) and the THAM (11 g, 0.09 mol) were dissolved into 150 mL of DMF solvent. After dissolution of the reagents, K₂CO₃ (27.6 g, 0.1 mol) was added to the above solution. The mixture was refluxed at 105 °C for 3 hours. The residual precipitates were filtered out and DMF solvent was then removed by evaporation. The residual product was dissolved into CHCl₃ and the solution was rinsed with saturated NaHCO₃ aqueous solution to eliminate residual salts. After obtain of CHCl₃ layer, the solvent was removed by evaporation. Next, the crude product was refined by recrystallization from ethyl acetate. The final product was dried under vacuum for overnight.

Fig. S1. (top) Synthesis scheme and (bottom) ¹H NMR spectra of N,N-dibenzyl tris(hydroxymethyl) aminomethane (Bz₂THAM)

Fig. S2. FT-IR spectra of amino functionalized hyperbranched polyglycerol (NH₂-HPG), glycidyl trimethyl ammonium chloride (GTAC), positively charged modified hyperbranched polyglycerol (PHPG), Sulfur trioxide pyridine complex (STPC) and negatively charged modified hyperbranched polyglycerol (NHPG).

Fig. S3. (top) modification scheme for positively charged hyperbranched polyglycerol (PHPG) and (bottom) ¹H NMR spectra of benzyl protected HPG (Bz₂HPG), GTAC, Benzyl protected PHPG and debenzylated PHPG

Fig. S4. (top) modification scheme for negatively charged hyperbranched polyglycerol (NHPG) and (bottom) ¹H NMR spectra of benzyl protected HPG (Bz₂HPG), STPC, Benzyl protected NHPG and debenzylated NHPG.

Sample Element	neat-PVDF	PVDF-HPG	PVDF-PHPG	PVDF-NHPG	
С	48.73	52.55	54.42	55.21	
Ν	NA	3.26	3.56	3.74	
0	1.74	16.13	14.96	13.98	
F	49.53	28.06	27.06	26.83	
S	NA	NA	NA	0.24	

Table S1. Atomic concentration of neat-PVDF, PVDF-HPG, PVDF-PHPG and PVDF-NHPG membranes detected by XPS analysis

Fig. S5. Calculated reversible and irreversible fouling percentages of the neat-PVDF, PVDF-HPG, PVDF-PHPG and PVDF-NHPG for (top) 500 ppm lysozyme (LYZ) and 500 ppm bovine serum albumin (BSA) filtration tests.

Membrane material	Surface modification method	foulants	FRR (%)	ref
PVDF	Grafting charged hyperbranched polyglycerols	BSA LYZ	89.6 (BSA, PVDF- NHPG) 72.6 (LYZ, PVDF-PHPG)	This study
PVDF	Blending zwitterion	BSA	61.2 - 81.2	1
РР	Grafting zwitterion	BSA, LYZ	91.2 (BSA) 90.2 (LYZ)	2
PAN	Grafting zwitterion	BSA	85	3
PVDF	Grafting zwitterion	BSA	73-85.1	4
PAN	Grafting short-chain amino acid	BSA	68.6 (Gly) 77.2 (Ser) 96.9 (Lys)	5
PVDF	Blending poly(<i>N</i> , <i>N</i> -dimethyl acrylamide)	BSA, LYZ	82 – 95 (BSA) 82 – 95 (LYZ)	6
PES	Blending Pluronic F127®	BSA LYZ	91.6 – 94.0 (BSA) 88.0 – 91.7 (LYZ)	7
Poly(ether imide)	Grafting poly(ethylene glycol)	BSA	70.3 - 85.6	8
PES	Blending carbon nanotube	BSA	59.5 - 79.4	9
PSf	Coating organic/inorganic star-shape polymer	BSA	94 (30 min filtration) 86 (180 min filtration)	10
PVDF	Blending hyperbranched polymer functionalized multi-walled carbon nanotube	BSA	85.3 - 95.7	11

Table S2. Summary of fouling recovery rate (FRR) for surface modified anti-fouling membranes in the literatures

Abbreviations: PVDF: Poly(vinylidene fluoride), PP: Poly(propylene), PAN: Poly(acrylonitrile), PES: Poly(ether sulfone), PSf: Polysulfone

References

- J.-H. Li, M.-Z. Li, J. Miao, J.-B. Wang, X.-S. Shao and Q.-Q. Zhang, *Appl. Surf. Sci.*, 2012, 258, 6398-6405.
- 2. A. H. E. N.-b. Performance, J. Phys. Chem. B, 2010, 114, 2422-2429.
- 3. H. Meng, Q. Cheng and C. Li, *Appl. Surf. Sci.*, 2014, 303, 399-405.
- M.-Z. Li, J.-H. Li, X.-S. Shao, J. Miao, J.-B. Wang, Q.-Q. Zhang and X.-P. Xu, J. Membr. Sci., 2012, 405, 141-148.
- Q. Shi, Y. Su, W. Chen, J. Peng, L. Nie, L. Zhang and Z. Jiang, J. Membr. Sci., 2011, 366, 398-404.
- X. Yang, B. Zhang, Z. Liu, B. Deng, M. Yu, L. Li, H. Jiang and J. Li, *J. Mater. Chem.*, 2011, 21, 11908-11915.
- 7. W. Zhao, Y. Su, C. Li, Q. Shi, X. Ning and Z. Jiang, J. Membr. Sci., 2008, 318, 405-412.
- W. Chinpa, D. Quémener, E. Bèche, R. Jiraratananon and A. Deratani, *J. Membr. Sci.*, 2010, 365, 89-97.
- 9. E. Celik, L. Liu and H. Choi, *Water Res.*, 2011, 45, 5287-5294.
- 10. D.-G. Kim, H. Kang, S. Han and J.-C. Lee, ACS Appl. Mater. Interfaces, 2012, 4, 5898-5906.
- X. Zhao, J. Ma, Z. Wang, G. Wen, J. Jiang, F. Shi and L. Sheng, *Desalination*, 2012, 303, 29-38.