A One-pot Multi-component Facile Synthesis of Dihydropyrimidin-2(*1H*)-thione Derivatives using Triphenylgermane as a Catalyst and its Binding Pattern Validation

Sohaila Andleeb, ^a Imtiaz-ud-Din, ^a* Muhammad Khawar Rauf, ^a* Syed Sikander Azam,^c Amin Badshah, ^a Haseeba Sadaf, ^a Ahmed Raheel, ^a Muhammad Nawaz Tahir, ^b Saad Raza^c

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan,

^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan.

°Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan

Supporting Information

Supplementary Table 1.Crystallographic data and structure refinement for compounds (1-4) and (7).

	(1)	(2)	(3)	(4)	(7)	
Formula	C ₁₄ H ₁₇ N ₃ O ₃ S	$C_{13} H_{15} FN_2 S$	$C_{13}H_{14}CIN_3O_2S$	$C_{13}H_{15}BrN_2S$	$C_{13}H_{13}CI_3N_2S$	
FW	307.36	250.33	311.78	311.24	335.66	
Т (К)	296(2)	296(2)	296(2)	296(2)	296(2)	
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	
Crystal system	monoclinic	Monoclinic	triclinic	monoclinic	orthorhombic	
Space group	P 21/n	P 21/n	P -1	P 21/n	Pbca	
a(Å)	12.0474(15)	9.7432(8)	6.3088(5)	12.3156(7)	15.2154(11)	
b(Å)	9.4787(9)	7.1550(5)	10.1010(8)	8.5081(5)	11.9065(9)	
c(Å)	14.3337(17)	18.8125(14)	12.0187(10)	14.8996(9)	17.0387(14)	
α(°)	90	90	91.338(4)	90	90	
β(°)	107.574(3)	91.594(5)	98.933(3)	114.046(3)	90	
γ(°)	90	90	99.800(4)	90	90	
V(Å ³), Z	1560.4(3), 4	1310.96(17), 4	744.59(10), 2	1425.73(15), 4	3086.8(4), 8	
D_{c} (Mg/m ³), μ (mm ⁻¹)	1.308, 0.220	1.268, 0.238	1.391, 0.401	1.450, 3.010	1.445, 0.716	
F(000)	648	528	324	632	1376	
Crystal size (mm ³)	0.40×0.22×0.20	0.35×0.24×0.22	0.38×0.32×0.2	0.36×0.24×0.22	0.38×0.30×0.26	
			8			
θ range (°)	2.615-27.00	2.166-27.587	1.717-27.00	2.780 -27.513	2.391-27.00	
	-15 ≤ h ≤ 15	-12 ≤ h ≤ 12	-8 ≤ h ≤ 7	-15 ≤ h ≤ 15	-15 ≤ h ≤ 19	
Index ranges	$-12 \le k \le 8$	-8 ≤ k ≤ 9	$-12 \le k \le 12$	-10 ≤ k ≤ 11	-15 ≤ k ≤ 12	
	-18≤ l ≤ 18	-24≤ l ≤24	-15≤ l ≤ 15	-19 ≤ l ≤ 16	-21 ≤ l ≤ 17	
Total reflections	12620	11164	11708	11792	14207	
Indept. Reflect.[R(int)]	3398 (0.0533)	3023 (0.0295)	3177 (0.0298)	3266 (0.0310)	3366 (0.0209)	
Completeness to (25.00°)	99.8%	99.4%	97.9%	99.6%	99.9%	

1

Max. and min.transmission	0.918& 0.960	0.921& 0.949	0.865 & 0.898	0.410 &0.557	0.775&0.835	
Data/restraints/parameters	3398/0/194	3023/39/178	3177/0/184	3266 /0/157	3366 /0/175	
Goodness-of-fit on F ²	1.014	1.060	1.047	1.032	1.033	
Final R indices [I>2 σ (I)]	R1 = 0.0587,	R1 = 0.0594,	$R_1 = 0.0485,$	R ₁ = 0.0594,	94, R ₁ = 0.0284,	
	wR2 = 0.1314	wR2 = 0.1647	$wR_2 = 0.1248$	wR ₂ = 0.1457	$wR_2 = 0.0741$	
R indices (all data)	R1 = 0.0587,	R1 = 0.0904,	R ₁ = 0.0721,	R ₁ = 0.1158,	R ₁ = 0.0364,	
	wR2 = 0.1612	wR2 = 0.1838	wR ₂ = 0.1387	wR ₂ = 0.1729	$wR_2 = 0.0809$	
Largest peak and hole	0.217 and	0.916 and	0.794 and	0.773 and	0.22 5and	
(e A ⁻³)	-0.196	-0.382	-0.268	-0.809	-0.212	

Supplementary Table 2. Selected bond lengths (Å) and angles (°) for compounds (1-4) and (7).

(1)				(2)					
S(1)-C(8)	1.693(3)	O(1)-N(1)-O(2)	124.2(4)	S(1)-C(7)	1.681(3)	C(7)-N(1)-C(10)	121.3(2)		
O(1)-N(1)	1.185(4)	O(1)-N(1)-C(2)	119.4(3)	F(1)-C(2)	1.352(3)	C(2)-C(1)-N(1)	121.0(3)		
O(2)-N(1)	1.216(4)	C(8)-N(2)-C(1)	118.7(2)	N(2)-C(7)	1.326(4)	F(1)-C(2)-C(3)	119.1(3)		
N(3)-C(8)	1.317(3)	C(11)-N(2)-C(1)	120.1(2)	N(2)-C(8)	1.452(4)	N(2)-C(7)-N(1)	117.2(2)		
N(1)-C(2)	1.479(4)	N(3)-C(8)-N(2)	117.3(2)	C(1)-C(2)	1.373(4)	N(2)-(C7)-S(1)	121.2(2)		
(3)	·	·		(4)					
S(1)- C(7)	1.680(3)	O(2)-N(1)-O(1)	123.1(3)	Br(1)-C(2)	1.877(5)	C(7)-N(1)-C(1)	119.2(3)		
O(1)-N(1)	1.214(3)	O(2)-N(1)-C(5)	117.5(3)	S(1)-C(7)	1.686(4)	C(2)-C(1)-N(1)	120.4(4)		
O(2)-N(1)	1.208(3)	O(1)-N(1)-C(5)	119.4(2)	N(2)-C(7)	1.322(5)	C(1)-C(2)-Br(1)	120.0(4)		
N(3)-C(7)	1.325(3)	N(3)-C(7)-N(2)	116.6(2)	N(2)-C(8)	1.462(5)	N(2)-C(7)-N(1)	117.7(3)		
N(1)-C(5)	1.470(4)	N(3)-C(7)-S(1)	121.50(19)	C(1)-C(2)	1.382(6)	N(2)-C(7)-S(1)	121.1(3)		
(7)									
S(1)-C(7)	1.6886(15)	C(7)-N(1)-C(1)	118.01(12)	Cl(1)-C(2)	1.7265(15)	N(1)-C(7)-S(1)	120.99(11)		
N(2)-C(7)	1.3224(19)	N(2)-C(7)-N(1)	116.97(13	CI(2)-C(4)	1.7417(16)	N(2)-C(8)-C(9)	108.01(12)		
N(2)-C(8)	1.472(2)	N(2)-C(7)-S(1)	122.04(11)	Cl(3)-C(6)	1.7291(16)	C(5)-C(6)-Cl(3)	119.21(12)		

<i>D</i> -H…A	D-H	H…A	D····A	D-H···A	D-H···A	D-H	H…A	D···A	D-H···A
(1)				(2)					
N(3)-H(3A)…S(1) ⁱ	0.86	2.50	3.337(3)	165.0	N(2)-H(2)…S(1) ⁱ	0.86	2.64	3.466(3)	162.0
C(5)-H(5)…S(1) ⁱⁱ	0.93	3.01	3.752(4)	138.4	C(6)-H(6)S(1) ⁱⁱ	0.93	2.97	3.860(3)	159.6
(3)				(4)					
N(3)-H(3A)…S(1) ⁱ	0.86	2.60	3.437(2)	164.8	N(2)-H(2)…S(1) ⁱ	0.86	2.53	3.371(3)	164.4
C(11)-H(11C)…O(1) ⁱⁱ	0.96	2.39	3.345(5)	172.5	C(6)-H(6)S(1) ⁱⁱ	0.93	3.00	3.753(6)	139.7
(7)				C(9)-H(9)S(1) ⁱⁱⁱ	0.93	3.00	3.637(4)	127.3	
N(2)-H(2)…S(1) ⁱ	0.86	2.59	3.4219(14)	162.2	C(11)-H(11C)…Br(1) ^{iv}	0.96	3.02	3.663(5)	125.4
C(5)-H(5)…S(1) ⁱⁱ	0.93	2.87	3.8017(17)	176.3					
C(11)-H(11C)…Cl(3)	0.96	2.98	3.658(2)	128.9					
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1 (1); (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1 (2); (i) -x+1, -y, -z; (ii) x-1, y, z.									
(3); (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+1/2, y-1/2, -z+1/2. (4); (i) -x+1, -y+1, -z+1; (ii) -x+1, y-1/2,									
-z+1/2 (7)									

Supplementary Table 3. The intermolecular and intramolecular hydrogen bonds for compounds (1-4) and (7). Hydrogen-bond geometry: Distance, Å; angle, °.

NMR (¹H and ¹³C) spectra for representative compounds

1-(2-Fluorophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione(2)

1-(2-Chloro-5-nitrophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione(3)

1-(2-Bromophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione(4)

Supplementary Fig. 1. Interaction diagram of 3 with Human topoisomerase II alpha (4fm9) using LigPlot

Supplementary Fig. 2. Interaction diagram of 8 with Human topoisomerase II alpha (4fm9) using Discovery Studio

Supplementary Fig. 3. Interaction diagram of 8 with Human topoisomerase II alpha (4fm9) uisng LigPlot

Supplementary Fig. 4. Interaction diagram of 3 with *Helicobacter pylori* Urease (1e9y) using PyMol.

Supplementary Fig. 5. Interaction diagram of 3 with *Helicobacter pylori* Urease (1e9y) using LigPlot.

Supplementary Fig. 6. Interaction diagram of 8 with *Helicobacter pylori* Urease (1e9y) using Discovery Studio.

Supplementary Fig. 7. Interaction diagram of 8 with *Helicobacter pylori* Urease (1e9y) using LigPlot.