Electronic Supplementary Information

Triple-helix molecular switch-induced hybridization chain

reaction amplification for developing universal and sensitive

electrochemical aptasensor

Qiaoqiao Liu, Jinquan Liu, Dinggeng He, Taiping Qing, Xiaoxiao He*, Kemin Wang* and Yinfei Mao

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.

*To whom correspondence should be addressed. Tel: 86-731-88821566; Fax: 86-731-88821566; E-

mail: kmwang@hnu.edu.cn. xiaoxiaohe@hnu.edu.cn

Entry	Sequence
СР	TTTTTTGTGTGTGTGT
TFO	AGAGAGAGAGAGGGAAAGAGAGAGACACACACAC
APT-Ade	CTCCCTTTACCTGGGGGGGGGGTATTGCGGAGGAAGGTTTTCCCTC
APT-	TCCCTTTCCTTCCTTCCTTTCCCT
Tmb	
H1	TTTTTTTTTTTCTCTCTCTTTCCCTCTCTCTCTCGGCAGAGAGAG
	GAAAG
H2	TTTTTTTTTAGAGAGAGAGAGAGGGAAAGAGAGAGCTTTCCCTCTCTCT
	C
	TGCCG

 Table S1. Oligonucleotides used in this work.

 Table S2. Comparison of different aptasensor methods for adenosine detection.

Method	Detection limit (nM)	Linger range (nM)	References
Fluorescence	101	200-900	[1]
Fluorescence	420	1-100000	[2]
Electrochemiluminescence	5.0	10-100	[3]
Electrochemical	2.5	10-400	[4]
Electrochemical	10.0	10-1000	[5]
Electrochemical	0.6	10-200	This work

 Table S3. Determination of adenosine in fetal bovine serum samples.

Samples	Spiked concentration (nM)	Detected concentration (nM)	Relative error (%)
1	50	45.86	8.28
2	100	93.56	6.44
3	200	183.04	8.48

Method	Detection limit (nM)	Linger range (nM)	References		
Fluorescence	2	2-50	[6]		
Fluorescence	8.4	50-900	[7]		
Electrochemical	16	20-2000	[8]		
Electrochemical	14	20-200	[9]		
Electrochemical	0.86	1-500	[10]		
Electrochemical	0.0709	1-500	This work		

Table S4. Comparison of different aptasensor methods for Tmb detection.

Table S5. Determination of Tmb in fetal bovine serum samples.

Table S5. Determination of Tmb in fetal bovine serum samples.					
Samples	Spiked concentration (nM)	Detected concentration (nM)	Relative error (%)		
1	50	47.22	4.56		
2	100	93.58	6.42		
3	500	460.64	7.87		

Fig. S1. 3% agarose gel electrophoresis demonstrates TFO-initiated HCR: lane M, 25 bp marker; lane 1, 1 μ M H1; lane 2,1 μ M H2; lane 3, mixture of 1.0 μ M H1 and 1 μ M H2; lanes 4-7, mixture of 1 μ M H1 and 1 μ M H2 in the presence of TFO with different concentration (100 nM, 200 nM,500 nM and 1 μ M). SYBR gold was used as the DNA stain and mixed with the samples. HCR time: 2 h.

Figure S2. The CC intensities response of (a) the CP/MCH modified gold electrode (Q1, black line), (b) the CP/MCH/TFO modified gold electrode (Q2, green line), (c) the CP/MCH/TFO modified gold electrode after treated with the mixture solution of the two hairpin probes (Q3, blue line) and (d) the CC response signal of the CP/MCH modified electrode treated with the THMS and the solution containing two hairpin probes sequentially in the absence of target (Q4, red line). $\Delta Q_A=Q3 - Q1$, ΔQ_A was the variation in the redox charge of [Ru(NH₃)₆]³⁺ with HCR, and $\Delta Q_B=Q2 - Q1$, ΔQ_B was the variation in the redox charge of [Ru(NH₃)₆]³⁺ without HCR. Intercepts at t = 0 in CC curves represented redox charges of [Ru(NH₃)₆]³⁺ trapped in DNA. Inset is a bar diagram with a standard error to show the reproducibility of Feasibility investigation. Error bars show the standard deviation of three experiments (n=3). CC measurements were obtained at a pulse period of 250 ms in 10 mM Tris-HCl buffer containing 50 μ M [Ru(NH₃)₆]³⁺ (PH 7.4).

Notes and references

- 1 H. H., S. Shi, X. Gao, R. Gao, Y. Zhu, X. Wu, R. Zang and T. Yao, *Biosens. Bioelectron.*, 2016, **79**, 198-204.
- 2 J. Sun, W. Jiang, J. Zhu, W. Li and L. Wang, Biosens. Bioelectron., 2015, 70, 15-20.
- 3 X. Wang, P. Dong, P. He and Y. Fang, Anal. Chim. Acta, 2015, 658, 128-132.
- 4 D. Wu, X. Ren, L. Hu, D. Fan, Y. Zheng and Q. Wei, *Biosens. Bioelectron.*, 2015, 74, 391-397.
- 5 F. Yan, F. Wang and Z. Chen, Sens. Actuators, B, 2011, 160, 1380-1385.
- 6 A. Bini, M. Minunni, S. Tombelli, S. Centi and M. Mascini, *Anal. Chem.*, 2007, 79, 3016-3019.
- 7 Y. Zhu, X. Hu, S. Shi, R. Gao, H. Huang, Y. Zhu, X. Lv and T. Yao, *Biosens. Bioelectron.*, 2016, **79**, 205-212.
- 8 H. Nie, Z. Yang, S. Huang, Z. Wu, H. Wang, R. Yu and J. Jiang, *Small*, 2012, **8**, 1407-1414.
- 9 X. Liu, L. Shi, X. Hua, Y. Huang, S. Su, Q. Fan, L. Wang and W. Huang, ACS Appl. Mater. Interfaces, 2014, 6, 3406-3412.
- 10 Y. Mao, J. Liu, D. He, X. He, K. Wang, H. Shi and L. Wen, *Talanta*, 2015, **143**, 381-387.