Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Coumarin functionalized thiocarbonohydrazones as a new class of chromofluorescent receptors for selective detection of fluoride ion[†]

Satya Narayan Sahu,^{1*} Subrata Kumar Padhan¹ and Prabhat Kumar Sahu²

¹School of Chemistry, Sambalpur University, Jyoti Vihar, Burla-768 019, Odisha, India ²Department of Chemistry, NIST, Palur Hills, Berhampur-761 008, Odisha, India Email: snsahu.chem@gmail.com

Electronic Supplementary Information (ESI[†])

Contents

	Page
Synthesis procedure of receptors 4 and 5	2
Characterization of receptor 4	2
Figure S1: ¹ H NMR spectrum of 4 in DMSO- d_6 .	3
Figure S2: ¹³ C NMR spectrum of 4 in DMSO- d_6 .	3
Figure S3: FT-IR spectrum of 4.	4
Characterization of receptor 5	4
Figure S4: ¹ H NMR spectrum of 5 in DMSO- d_6 .	5
Figure S5: ¹³ C NMR spectrum of 5 in DMSO- d_6 .	5
Figure S6: FT-IR spectrum of 5.	6
Figure S7: Observed colour change in 4+ F ⁻ complex solution in presence of water	6
Figure S8: UV-visible titration spectra of 4 (20 μ M) with 0–10 equiv. of acetate ion.	7
Figure S9: UV-visible titration spectra of 5 (20 μ M) with 0–6 equiv. of acetate ion.	7
Figure S10: Benesi-Hildebrand (B-H) plot of 5 in presence of F - ion.	8
Figure S11: Benesi-Hildebrand plot of 4 with acetate ions.	8
Figure S12: Benesi-Hildebrand plot of 5 with acetate ions.	9
Figure S13: Emission spectra of 4 (10 µM) upon addition of F ⁻ , Cl ⁻ , Br ⁻ , I ⁻ , H ₂ PO ₄ ⁻ ,	0
HSO ₄ ⁻ and AcO ⁻ ions.	7
Figure S14: Emission spectra of 5 (10 µM) upon addition of F ⁻ , Cl ⁻ , Br ⁻ , I ⁻ , H ₂ PO ₄ ⁻ ,	10
HSO ₄ ⁻ and AcO ⁻ ions.	10
Figure S15: Fluorescent "turn on" behaviour of 5 in presence of fluoride ions	10
Figure S16: Partial ¹ H NMR spectra of 4 in presence of fluoride ions	11
Cartesian coordinates of receptor 4	12
Cartesian coordinates of receptor 4+F-	13
Procedure for Job's plot experiment	14
General method for ¹ H NMR titrations experiments	14

1. Synthesis procedure of receptors 4 and 5

A hot solution of thiocarbonohydrazide (0.28 gm, 2.64 mmol) in water (5 mL) was added slowly in dropwise manner over 15 minutes to the acetyl-coumarin derivative 1 (1.0 gm, 5.31 mmol) or 2 (1.26 gm, 5.29 mmol) dissolved in 30 mL ethanol under hot (50 °C) condition. Initially the solution looked turbid and solution became clear after complete addition of thiocarbonohydrazide. Then the solution was allowed to reflux for 6 h with stirring till complete precipitation if formed. The precipitate was cooled, filtered and washed with boiling water followed by hot ethanol to get a solid powder 4 (light orange colour) or 5 (yellowish colour) which was then dried in vacuum to obtain the pure product in quantitative yields (4 = 82 %, 5 = 80 %).

2. Bis(3-acetyl-2H-chromen-2-one)thiocarbonohydrazone (4)

M.P. = 215 °C. ¹H NMR (400 MHz, *DMSO-d*₆) δ (ppm) = 2.21 (6H, s, CH₃), 7.37-7.43 (4H, m, Ar-H), 7.62-7.66 (2H, m, Ar-H), 7.74 (2H, d, J = 8.0 Hz, Ar-H), 8.47 (2H, s, =CH-Ar), 9.76 (1H, s, -NH, D₂O exchangeable), 10.41 (1H, s, NH, D₂O exchangeable). ¹³C NMR (100 MHz, *DMSO-d*₆) δ (ppm) = 11.2, 114.7, 116.5, 119.2, 124.8, 129.2, 140.4, 140.5, 158.6, 160.4, 162.8, 174.4. FT-IR (KBr) v (cm⁻¹) = 3270, 2937, 1715, 1601 (>C=N-), 1532, 1505, 1427, 1375, 1240 (>C=S), 1152, 1125, 1098, 1008, 978, 850. UV-vis. (DMSO, 20 µM) = λ_{max} (nm) 342 (n- π *). Fluorescence emission at λ_{ex} 360 nm (DMSO, 10 µM) = 437 nm.

Figure S1: ¹H NMR spectrum of 4 in DMSO- d_6 .

Figure S2: ¹³C NMR spectrum of 4 in DMSO- d_6 .

Figure S3: FT-IR spectrum of 4.

3. Bis[2-acetyl-3*H*-benzo[*f*]chromen-3-one]thiocarbonohydrazone (5)

M.P. = 221 °C. ¹H NMR (400 MHz, *DMSO-d*₆) δ (ppm) = 2.27 (6H, s, CH₃), 7.58-7.66 (4H, m, Ar-H), 7.76 (2H, m, Ar-H), 8.05 (2H, d, *J* = 8.0 Hz, Ar-H), 8.20 (2H, d, *J* = 8.0 Hz, Ar-H), 8.68 (2H, d, *J* = 8.0 Hz, Ar-H), 9.12 (2H, s, =CH-Ar), 9.97 (1H, s, -NH, D₂O exchangeable), 10.40 (1H, s, NH, D₂O exchangeable). ¹³C NMR (100 MHz, *DMSO-d*₆) δ (ppm) = 12.6, 112.3, 116.4, 122.3, 122.9, 126.5, 129.1, 129.3, 129.8, 136.2, 142.4, 155.3, 158.4, 179.0. FT-IR (KBr) v (cm⁻¹) = 3225, 3005, 1725, 1675, 1599 (>C=N-), 1552, 1510, 1453, 1390, 1353, 1246 (>C=S), 1210, 1097, 1024, 975, 825. UV-vis. (DMSO, 20 µM) = λ_{max} (nm) 379 (n- π^*). Fluorescence emission at λ_{ex} 360 nm (DMSO, 10 µM) = 455 nm.

Figure S4: ¹H NMR spectrum of 5 in DMSO- d_6 .

Figure S5: 13 C NMR spectrum of 5 in DMSO- d_6 .

Figure S6: FT-IR spectrum of 5.

Figure S7: Colour changes observed by addition of few drops of water to receptor 4+ F⁻ complex solution

Figure S8: UV-visible titration spectra of 4 (20 μ M) with 0–10 equiv. of acetate ion (TBA salt) in DMSO. Inset shows the change in absorbance at 546 nm with the addition of various equiv. of AcO⁻ ions.

Figure S9: UV-visible titration spectra of 5 (20 μ M) with 0–6 equiv. of acetate ion (TBA salt) in DMSO. Inset shows the change in absorbance at 542 nm with the addition of various equiv. of AcO⁻ ions.

Figure S10: Benesi-Hildebrand (B-H) plot of $1/(A-A_0)$ at 542 nm vs $1/[F^-]$ indicating 1:1 binding between 5 and F⁻ ion. Inset shows the B-H plot of $1/(A-A_0)$ at 542 nm vs $1/[F^-]^2$ indicating 1:2 binding between 5 and F⁻ ion.

Figure S11: Benesi-Hildebrand plot of 4 with acetate ions indicating 1:1 binding stoichiometry.

Figure S12: Benesi-Hildebrand plot of 5 with acetate ions indicating 1:1 binding stoichiometry.

Figure S13: Emission spectra of 4 (10 μ M) upon addition of 10 equiv. of F⁻, Cl⁻, Br⁻, I⁻, H₂PO₄⁻, HSO₄⁻ and AcO⁻ ions (as tetrabutylammonium salts) in DMSO, $\lambda_{ex} = 360$ nm. Inset shows the emission intensity at 437 nm vs. various anions

Figure S14: Emission spectra of **5** (10 μ M) upon addition of 10 equiv. of F⁻, Cl⁻, Br⁻, I⁻, H₂PO₄⁻, HSO₄⁻ and AcO⁻ ions (as tetrabutylammonium salts) in DMSO, $\lambda_{ex} = 360$ nm. Inset shows the emission intensity at 439 nm vs. various anions

5	F-	Cŀ	Br-	ŀ	AcO-	HSO4-	H ₂ PO ₄ -
-							
-	-						

Figure S15: Fluorescent "turn on" behaviour of 5 for fluoride ion over other anions in DMSO solution ($10\mu M$) with the addition of 5 equivalents of various anions (as TBA salts) under UV light (365 nm).

Figure S16: Partial ¹H NMR spectra (400 MHz and 298 K) of receptor **4** (10 mM) upon addition of various equivalents of TBAF (40 mM) in DMSO- d_6 .

Cartesian coordinates of receptor 4

ATOM	1 C -1.530 -5.950 -5.883	ATOM	26 C	1.621	2.185	1.782
ATOM	2 C -1.243 -4.984 -4.936	ATOM	27 C	1.767	1.449	3.093
ATOM	3 C -1.900 -4.998 -3.690	ATOM	28 H	0.823	1.443	3.648
ATOM	4 C -2.840 -6.004 -3.442	ATOM	29 H	2.063	0.413	2.918
ATOM	5 C -3.136 -6.982 -4.386	ATOM	30 H	2.526	1.894	3.731
ATOM	6 C -2.477 -6.946 -5.606	ATOM	31 C	1.936	3.629	1.750
ATOM	7 H -0.941 -3.257 -2.834	ATOM	32 C	2.033	4.373	0.479
ATOM	8 H -1.033 -5.932 -6.844	ATOM	33 C	2.468	6.410	1.746
ATOM	9 H -0.510 -4.211 -5.134	ATOM	34 N	-0.570	-1.376	0.125
ATOM	10 C -1.667 -4.043 -2.660	ATOM	35 H	-1.007	-1.291	1.034
ATOM	11 H -3.860 -7.752 -4.156	ATOM	36 N	0.746	0.323	0.843
ATOM	12 H -2.704 -7.695 -6.354	ATOM	37 H	0.478	-0.012	1.765
ATOM	13 C -3.280 -5.155 -1.209	ATOM	38 O	2.245	5.747	0.575
ATOM	14 C -2.308 -4.084 -1.453	ATOM	39 O	1.951	3.933	-0.643
ATOM	15 0 -3.497 -6.040 -2.246	ATOM	40 C	2.472	5.703	2.953
ATOM	16 O -3.923 -5.366 -0.197	ATOM	41 C	2.748	6.401	4.142
ATOM	17 C -1.993 -3.066 -0.417	ATOM	42 C	3.011	7.756	4.106
ATOM	18 C -2.787 -2.897 0.849	ATOM	43 H	2.757	5.859	5.080
ATOM	19 H -2.856 -1.845 1.132	ATOM	44 H	3.239	8.289	5.020
ATOM	20 H -3.790 -3.290 0.748	ATOM	45 C	2.177	4.307	2.910
ATOM	21 H -2.302 -3.437 1.670	ATOM	46 H	2.121	3.790	3.859
ATOM	22 N -0.989 -2.332 -0.734	ATOM	47 C	2.711	7.778	1.699
ATOM	23 C 0.335 -0.421 -0.236	ATOM	48 H	2.686	8.297	0.750
ATOM	24 S 0.889 -0.171 -1.802	ATOM	49 C	2.985	8.443	2.884
ATOM	25 N 1.171 1.611 0.711	ATOM	50 H	3.184	9.507	2.861

Cartesian coordinates of receptor 4+F-

ATOM	1 C -2.165 -6.339 -5.876	ATOM	26 C	1.731	2.141	1.769
ATOM	2 C -1.630 -5.380 -5.090	ATOM	27 C	1.369	1.353	3.042
ATOM	3 C -2.044 -5.264 -3.758	ATOM	28 H	0.305	1.309	3.144
ATOM	4 C -2.932 -6.162 -3.237	ATOM	29 H	1.762	0.360	2.971
ATOM	5 C -3.492 -7.101 -4.045	ATOM	30 H	1.789	1.843	3.896
ATOM	6 C -3.128 -7.204 -5.348	ATOM	31 C	1.933	3.666	1.839
ATOM	7 H -0.742 -3.462 -3.279	ATOM	32 C	2.301	4.464	0.581
ATOM	8 H -1.856 -6.434 -6.896	ATOM	33 C	2.411	6.499	1.898
ATOM	9 H -0.897 -4.708 -5.485	ATOM	34 N	-0.340	-0.772	-0.508
ATOM	10 C -1.503 -4.112 -2.902	ATOM	35 H	-0.322 ·	-0.963	0.466
ATOM	11 H -4.224 -7.772 -3.647	ATOM	36 N	1.683	0.135	0.578
ATOM	12 H -3.576 -7.949 -5.971	ATOM	37 H	0.984 -	-0.166	1.211
ATOM	13 C -3.048 -4.931 -1.148	ATOM	38 F	-0.003 -	0.839	1.722
ATOM	14 C -2.019 -3.925 -1.677	ATOM	39 O	2.283	5.900	0.591
ATOM	15 0 -3.291 -6.166 -1.839	ATOM	40 O	2.610	3.852	-0.474
ATOM	16 O -3.679 -4.676 -0.089	ATOM	41 C	2.127	5.818	3.044
ATOM	17 C -1.594 -2.715 -0.824	ATOM	42 C	2.144	6.482	4.278
ATOM	18 C -2.200 -2.510 0.577	ATOM	43 C	2.512	7.783	4.344
ATOM	19 H -2.237 -1.464 0.800	ATOM	44 H	1.871	5.958	5.171
ATOM	20 H -3.190 -2.915 0.600	ATOM	45 H	2.527	8.288	5.287
ATOM	21 H -1.594 -3.009 1.304	ATOM	46 C	1.801	4.320	3.003
ATOM	22 N -0.728 -1.871 -1.284	ATOM	47 H	1.491	3.804	3.888
ATOM	23 C 1.079 -0.361 -0.697	ATOM	48 C	2.826	7.837	1.979
ATOM	24 S 1.857 -0.481 -2.052	ATOM	49 H	3.099	8.364	1.090
ATOM	25 N 1.866 1.521 0.642	ATOM	50 C	2.877	8.466	3.178
		ATOM	51 H	3.193	9.487	3.233

4. Procedure for Job's plot experiment:

A series of solutions containing receptor 4 or 5 and tetrabutylammonium fluoride were prepared such that the sum of the total concentration of receptor 4 or 5 and fluoride ion remained constant (100 μ M). The mole fraction of receptor (X_R) was varied from 0.1 to 1.0. The corrected absorbance ([A-A₀] / [A₀]) at 546 nm and 542 nm for receptor 4 and 5 respectively were plotted against the molar fraction of the receptor solution. The value of mole fraction of receptor at maximum absorption (X_{max}) was obtained from the plot and the stoichiometry ratio (n) of the receptor-fluoride ion complex (R:F_n) at equilibrium was calculated from the relationship, n= $X_{max}/(1-X_{max})$.

5. General method for ¹H NMR titrations experiments.

A 10 mM solution of receptor 4 was prepared in DMSO- d_6 . To a 0.5 ml of receptor solution, various equivalents of tetrabutylammonium fluoride (40 mM in DMSO- d_6) were added to an NMR tube and the spectra were recorded.