Two Polymolybdate-Based Complexes and Their Graphene Composites with Visible-Light Photo-Responses

Hai-Qiang Luo, ^a Pan Zhang, ^a Yong-Xi Yang, ^a Yun Gong ^{*a} and Jian-Hua Lin ^{*a, b}

^{*a*} Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China. Tel: +86-023-65106150 E-mail: gongyun7211@cqu.edu.cn

^b State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China Tel: +86-010-62753541 E-mail: jhlin@pku.edu.cn

Complex 1			
Mo(1)-O(6)	1.67(17)	Mo(1)-O(1)	2.34(14)
Mo(2)-O(10)	1.69(15)	Mo(2)-O(1)	2.35(14)
Mo(3)-O(12)	1.70(13)	Mo(3)-O(11)	2.33(14)
Mo(4)-O(13)	1.78(19)	Mo(4)-O(2)	2.47(15)
O(2)-Mo(1)-O(1)	73(5)	O(5)-Mo(1)-O(1)	165(6)
O(7)-Mo(2)-O(1)	68(6)	O(8)-Mo(2)-O(3)	160(4)
O(4)-Mo(3)-O(2)	71(8)	O(8)#1-Mo(3)-O(11)	173(5)
O(2)#2-Mo(4)-O(7)	73(8)	O(13)-Mo(4)-O(2)	178(6)
Complex 2			
Mo(1)-O(5)	1.693(3)	Mo(1)-O(1)	2.209(3)
Mo(1)-N(2)	2.428(4)	Mo(2)-O(8)	1.699(3)
Mo(2)-O(1)	2.203(3)	Mo(2)-N(8)	2.456(4)

Table S1 Selected bond lengths (Å) and angles (°) for complexes 1 and 2

Mo(3)-O(9)	1.698(3)	Mo(3)-O(6)	2.224(3)
Mo(4)-O(11)	1.703(4)	Mo(4)-O(13)	1.9230(16)
Mo(4)-N(3)	2.322(4)	Mo(4)-N(4)#3	2.443(4)
O(2)-Mo(1)-O(1)	72.90(12)	O(5)-Mo(1)-O(1)	162.19(15)
O(3)-Mo(1)-N(2)	78.32(14)	O(4)-Mo(1)-N(2)	176.00(15)
O(6)-Mo(2)-O(1)	72.97(11)	O(8)-Mo(2)-O(1)	156.47(14)
O(6)-Mo(2)-N(8)	74.00(12)	O(7)-Mo(2)-N(8)	170.99(15)
O(6)#4-Mo(3)-O(6)	71.84(13)	O(9)-Mo(3)-O(6)	155.72(15)
O(11)-Mo(4)-O(13)	99.08(14)	O(3)-Mo(4)-O(13)	145.40(16)
O(13)-Mo(4)-N(4)#3	76.13(13)	O(11)-Mo(4)-N(4)#3	167.12(16)
O(11)-Mo(4)-N(3)	90.48(17)	N(3)-Mo(4)-N(4)#3	76.77(13)

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x+1,-y+1,-z+1 #3 -x+1,y,-z+1/2 #4 -x+3/2,-y+3/2,-z+1

Fig. S1 The PXRD patterns of complexes 1, 1/graphene composite (a), 2 and 2/graphene composite (b).

(**d**)

Fig. S2 The optic micrograms (40-fold magnified) of 1-GCE (a), 1/graphene-GCE (b), 2-GCE (c) and 2/graphene-GCE (d).

(a)

Fig. S3 CVs of the bare GCE in a 0.4 M acetic acid- sodium acetate buffer solution (pH = 4.5, 50 mL) in the potential range from -1.8 to 2.5 V vs SCE at different sweep rates.

Fig. S4 CVs of L1-GCE in a 0.4 M acetic acid- sodium acetate buffer solution (pH = 4.5, 50 mL) in the potential range from -1.8 to 2.5 V vs SCE at different sweep rates.

Fig. S5 CVs of 1-GCE in a 0.4 M acetic acid- sodium acetate buffer solution (pH = 4.5, 50 mL) in the potential range from -1.8 to 2.5 V vs SCE at different sweep rates.

Fig. S6 CVs of L2-GCE in a 0.4 M acetic acid- sodium acetate buffer solution (pH = 4.5, 50 mL) in the potential range from -1.8 to 2.5 V vs SCE at different sweep rates.

Fig. S7 CVs of 2-GCE in a 0.4 M acetic acid- sodium acetate buffer solution (pH = 4.5, 50 mL) in the potential range from -1.8 to 2.5 V vs SCE at different sweep rates.

Fig. S8 Raman spectrum ($\lambda_{ex} = 514.5 \text{ nm}, 0.4 \text{ mW}$) of the graphene.

(c)

(d)

(e)

(f)

(i)

(j)

Fig. S9 The SEM images of the graphene (**a**, **b**), complex 1 (**c**, **d**), 1/graphene composite (**e**, **f**), complex 2 (**g**, **h**) and 2/graphene composite (**i**, **j**).

Fig. S10 CVs of 1/graphene-GCE in a 0.4 M acetic acid- sodium acetate buffer solution (pH = 4.5, 50 mL) in the potential range from -1.8 to 2.5 V vs SCE at different sweep rates.

Fig. S11 CVs of **2/graphene-GCE** in a 0.4 M acetic acid- sodium acetate buffer solution (pH = 4.5, 50 mL) in the potential range from -1.2 to 2.5 V vs SCE at different sweep rates.

Fig. S12 Nyquist plots (Z' vs. -Z'') of the three-electrode systems in 0.4 M acetic acidsodium acetate buffer solution (pH = 4.5, 50 mL) at the initial potential of -1.0 V vs SCE with **2-GCE** and **2/graphene-GCE** as working electrodes, respectively.

Fig. S13 UV-Vis absorption spectra at room temperature for the free ligands L1, L2, complexes 1-2 and their graphene composite materials.

Fig. S14 The diffuse reflectance spectra for complexes 1 and 2 in Kubelka–Munk functions.

Fig. S15 Current-time curves for complex 1- and 1/graphene composite-modified FTO electrodes in the absence (dotted lines) and presence of visible light illumination (solid lines) (650 nm > λ > 350 nm) at 100 mW•cm⁻² with the open circuit potential of 0V vs Ag/AgCl was applied to the electrodes.

Fig. S16 Current-time curves for L2-, complex 2- and 2/grapheme composite-modified FTO electrodes in the absence (dotted lines) and presence of visible light illumination (solid lines) (650 nm > λ > 350 nm) at 110 mW•cm⁻² with the open circuit potential of 0V vs Ag/AgCl was applied to the electrodes.

Fig. S17 Nyquist plots (Z' vs. -Z'') of the three-electrode systems at E = 0 V vs Ag/AgCl in acetic acid- sodium acetate buffer solution (0.4 M, pH = 4.5, 50 mL) in the absence and presence of visible light illumination (650 nm > λ > 350 nm) with the complexes-and their graphene composites-modified FTO slides as working electrodes, respectively.

Fig. S18 Nyquist plots (*Z'* vs. -Z'') of the three-electrode systems at *E* = 0 V vs Ag/AgCl in acetic acid- sodium acetate buffer solution (0.4 M, pH = 4.5, 50 mL) in the absence and presence of visible light illumination (650 nm > λ > 350 nm) with graphene-, **1**- and 1/graphene composite- modified FTO slides as working electrodes, respectively.

Fig. S19 Thermogravimetric curves of complexes 1 (red) and 2 (blue).