Electronic Supplementary Information

Evaluation of electron or charge transfer processes between chromenylium-based fluorophores and protonated-deprotonated aniline

Jin-Wei Xiao,^a Wei-Jin Zhu,^a Ru Sun,^{*a} Yu-Jie Xu,^b and Jian-Feng Ge ^{*a}

^{a.} College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China. E-mail: sunru924@hotmail.com, ge_jianfeng@hotmail.com.

^{b.} School of Radiation Medicine and Protection, Medicine College of Soochow University, Suzhou 215123, China.

Index

1. Figures
Fig. S1 ¹ H NMR of dyes 1a-b in DMSO- <i>d6</i> (top) and the acidic condition (bottom). (a) dye 1a ; (b) dye 1b .
S3
Fig. S2 The resonance equilibrium of $1a^+$ (a) and frontier molecular orbitals (FMOs) involved in the
vertical excitation and emission of dyes 1a⁺-i (b) and 1a⁺-ii (c). CT stands for conformation transformation.
Excitation and radiative processes are represented by solid lines and the nonradiative processes by
dotted lines. For details please refer to Tables S2 and S3S4
Fig. S3 The resonance equilibrium of $\mathbf{1b}^{\star}$ (a) and frontier molecular orbitals (FMOs) involved in the
vertical excitation and emission of dyes $\mathbf{1b}^{+}$ - <i>i</i> (b) and $\mathbf{1b}^{+}$ - <i>ii</i> (c). CT stands for conformation transformation.
Excitation and radiative processes are represented by solid lines and the nonradiative processes by
dotted lines. For details please refer to Tables S2 and S3S5
Fig. S4 Fluorescence responses of dye 1a (10 μ M) to different analytes, K ⁺ (100 mM), Na ⁺ (100 mM), Ca ²⁺
(0.5 mM), Mg ²⁺ (0.5 mM), Cd ²⁺ (0.3 mM), Cu ²⁺ (0.3 mM), Co ²⁺ (0.3 mM), Hg ²⁺ (0.3 mM), Mn ²⁺ (0.3 mM),
Ni ²⁺ (0.3 mM), Cys (0.1 mM), Phe (0.1 mM), Gly (0.1 mM), Glu (0.1 mM), Arg (0.1 mM), Lys (0.1 mM), Pro
(0.1 mM), Try (0.1 mM) and His (0.1 mM) were included: (a, c) tested in Britton-Robinson Buffer (pH =
7.0); (b, d) tested in Britton-Robinson Buffer (pH = 3.0)S6
Fig. S5 Fluorescence responses of dye 1b (10 μ M) to different analytes, K ⁺ (100 mM), Na ⁺ (100 mM), Ca ²⁺
(0.5 mM), Mg ²⁺ (0.5 mM), Cd ²⁺ (0.3 mM), Cu ²⁺ (0.3 mM), Co ²⁺ (0.3 mM), Hg ²⁺ (0.3 mM), Mn ²⁺ (0.3 mM),
Ni ²⁺ (0.3 mM), Cys (0.1 mM), Phe (0.1 mM), Gly (0.1 mM), Glu (0.1 mM), Arg (0.1 mM), Lys (0.1 mM), Pro

(0.1 mM), Try (0.1 mM) and His (0.1 mM) were included: (a, c) tested in Britton-Robinson Buffer (pH =
7.0); (b, d) tested in Britton-Robinson Buffer (pH = 2.0)S7
Fig. S6 The reversible optical responses of dyes 1a-b at different pH conditions: (a) dye 1a; (b) dye 1b57
2. Tables
Table S1. Stability of different conjugated structures of dyes 1a ⁺ -c ⁺ and their protonated forms. Stability of different conjugated structures of dyes 1a ⁺ -c ⁺
Table S2 Selected parameters for the vertical excitation (UV-vis absorptions) of dyes $1a^+-c^+$ and $1c^++H^+$
based on the optimized ground state geometries in water
Table S3 Selected parameters for emission related of dyes 1a ⁺ -c ⁺ and 1c ⁺ +H ⁺ based on the optimized
lowest singlet excited state geometries in water
4. Appendix
Fig. S7 ¹ H NMR of 3
Fig. S8 ¹³ C NMR of 3
Fig. S9 HRMS(ESI ⁺) of 3
Fig. S10 ¹ H NMR of 4.
Fig. S11 ¹³ C NMR of 4
Fig. S12 HRMS(ESI ⁺) of 4S14
Fig. S13 ¹ H NMR of 5
Fig. S14 ¹³ C NMR of 5
Fig. S15 HRMS(ESI+) of 5
Fig. S16 ¹ H NMR of 6
Fig. S17 ¹³ C NMR of 6
Fig. S18 HRMS(ESI ⁺) of 6
Fig. S19 ¹ H NMR of dye 1a
Fig. S20 ¹³ C NMR of dye 1a
Fig. S21 HRMS(ESI ⁺) of dye 1aS20
Fig. S22 ¹ H NMR of dye 1b
Fig. S23 ¹³ C NMR of dye 1b
Fig. S24 HRMS(ESI ⁺) of dye 1b
Fig. S25 ¹ H NMR of dye 1cS23
Fig. S26 ¹³ C NMR of dye 1c
Fig. S27 HRMS(ESI ⁺) of dye 1c

1. Figures

Fig. S1 ¹H NMR of dyes **1a-b** in DMSO-*d6* (top) and the acidic condition (bottom). (a) dye **1a**; (b) dye **1b**.

Fig. S2 The resonance equilibrium of $\mathbf{1a}^+$ (a) and frontier molecular orbitals (FMOs) involved in the vertical excitation and emission of dyes $\mathbf{1a}^+$ -*i* (b) and $\mathbf{1a}^+$ -*ii* (c). CT stands for conformation transformation. Excitation and radiative processes are represented by solid lines and the nonradiative processes by dotted lines. For details please refer to Tables S2 and S3.

Fig. S3 The resonance equilibrium of $\mathbf{1b}^+$ (a) and frontier molecular orbitals (FMOs) involved in the vertical excitation and emission of dyes $\mathbf{1b}^+$ -*i* (b) and $\mathbf{1b}^+$ -*ii* (c). CT stands for conformation transformation. Excitation and radiative processes are represented by solid lines and the nonradiative processes by dotted lines. For details please refer to Tables S2 and S3.

Fig. S4 Fluorescence responses of dye **1a** (10 μ M) to different analytes, K⁺ (100 mM), Na⁺ (100 mM), Ca²⁺ (0.5 mM), Mg²⁺ (0.5 mM), Cd²⁺ (0.3 mM), Cu²⁺ (0.3 mM), Co²⁺ (0.3 mM), Hg²⁺ (0.3 mM), Mn²⁺ (0.3 mM), Ni²⁺ (0.3 mM), Cys (0.1 mM), Phe (0.1 mM), Gly (0.1 mM), Glu (0.1 mM), Arg (0.1 mM), Lys (0.1 mM), Pro (0.1 mM), Try (0.1 mM) and His (0.1 mM) were included: (a, c) tested in Britton-Robinson Buffer (pH = 7.0); (b, d) tested in Britton-Robinson Buffer (pH = 3.0).

Fig. S5 Fluorescence responses of dye **1b** (10 μ M) to different analytes, K⁺ (100 mM), Na⁺ (100 mM), Ca²⁺ (0.5 mM), Mg²⁺ (0.5 mM), Cd²⁺ (0.3 mM), Cu²⁺ (0.3 mM), Co²⁺ (0.3 mM), Hg²⁺ (0.3 mM), Mn²⁺ (0.3 mM), Ni²⁺ (0.3 mM), Cys (0.1 mM), Phe (0.1 mM), Gly (0.1 mM), Glu (0.1 mM), Arg (0.1 mM), Lys (0.1 mM), Pro (0.1 mM), Try (0.1 mM) and His (0.1 mM) were included: (a, c) tested in Britton-Robinson Buffer (pH = 7.0); (b, d) tested in Britton-Robinson Buffer (pH = 2.0).

Fig. S6 The reversible optical responses of dyes **1a-b** at different pH conditions: (a) dye **1a**; (b) dye **1b**.

2. Tables

Structures	Et NCC	EI. N. CH3		
Dye No.	1a +- <i>i</i>	1a +- <i>ii</i>	1a ⁺ - <i>i</i> + H ⁺	1a ⁺ - <i>ii</i> + H ⁺
HF(hartree)	-1793.0302226	-1793.0418659	-1793.4811741	-1793.4792696
		stable	stable	
Structures	EL_N_EL H ₃ C, N_CH ₃ EL_CO ₄		$\begin{array}{c} EI_{1}\overset{H}{\underset{l}{}}, EI\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Dye No.	1b ⁺ - <i>i</i>	1b ⁺ - <i>ii</i>	1b ⁺ - <i>i</i> + H ⁺	1b ⁺ - <i>ii</i> + H ⁺
Dye No. HF(hartree)	1b ⁺ - <i>i</i> -1676.268848	1b ⁺ - <i>ii</i> -1676.2689758	1b ⁺ - <i>i</i> + H ⁺ -1676.7042854	1b ⁺ - <i>ii</i> + H ⁺ -1676.7042852
Dye No. HF(hartree)	1b ⁺ - <i>i</i> -1676.268848	1b ⁺ - <i>ii</i> -1676.2689758 stable	1b ⁺ - <i>i</i> + H ⁺ -1676.7042854 stable	1b ⁺ - <i>ii</i> + H ⁺ -1676.7042852 stable
Dye No. HF(hartree) Structures	1b ⁺ - <i>i</i> -1676.268848	1b ⁺ - <i>ii</i> -1676.2689758 stable	$\frac{1b^{+}-i + H^{+}}{-1676.7042854}$ stable $\underbrace{I_{+}, H_{+}, E_{+}}_{E_{+}, H_{+}, E_{+}}$	$\frac{1b^{+}-ii + H^{+}}{-1676.7042852}$ stable $E_{L, H, E^{+}}$
Dye No. HF(hartree) Structures Dye No.	1b ⁺ - <i>i</i> -1676.268848	1b ⁺ - <i>ii</i> -1676.2689758 stable Et. N. Et CIO ² CIO ² 1c⁺-<i>ii</i>	$\frac{1b^{+} \cdot i + H^{+}}{-1676.7042854}$ stable $\underbrace{I_{i} + \underbrace{I_{i} + i}_{Ei} + \underbrace{I_{i} $	$\frac{1b^{+}-ii + H^{+}}{-1676.7042852}$ stable $\underbrace{e_{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}}_{E_{1}, \frac{1}{2}, \frac{1}{2}} \underbrace{e_{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}}_{E_{1}, \frac{1}{2}, \frac{1}{2}} \underbrace{e_{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}}_{E_{1}, \frac{1}{2}, \frac{1}{2}$
Dye No. HF(hartree) Structures Dye No. HF(hartree)	1b*-i -1676.268848 Image: constraint of the second	1b*-ii -1676.2689758 stable • • • • • • • • • • • • • • •	$\frac{1b^{+} \cdot i + H^{+}}{-1676.7042854}$ stable $\underbrace{I_{t} \cdot i_{t} \cdot E^{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}} \underbrace{I_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}_{E^{t} \cdot i_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t} \cdot i_{t}}$	$\frac{1b^{+}-ii + H^{+}}{-1676.7042852}$ stable $\underbrace{I_{t} + H^{+}}_{Et} + \underbrace{I_{t} + H^{+}}_{Et} + \underbrace{I_{t} + H^{+}}_{Et} + \underbrace{I_{t} + H^{+}}_{-1787.9135717}$

Table S1. Stability of different conjugated structures of dyes **1a⁺-c⁺** and their protonated forms.

	Electronic	Excit	Excitation		fa	C ausa a siti a sh	
ayes	transitions	en		λ _{exp} ./nm	Ju	Composition	Cl
1-+ :		E/eV	<u>۸/nm</u>	710	0.0504		0 69009
Ta /	$S_0 \rightarrow S_1$	1.54	805	/19	0.0594	H-1→L	0.08998
	c .→ c .	1 00	657			⊓→L	0.13309
	$3_0 - 3_2$	1.09	057		0.0000	H-2→L	0.17744
							0.66923
	$\varsigma_{\alpha} \rightarrow \varsigma_{\alpha}$	2 30	540		0 3268		0.64913
	50 / 53	2.50	540		0.5200	H→I	-0 17332
						H →I +1	-0.21105
1a⁺- <i>ii</i>	$S_0 \rightarrow S_1$	1.52	814	719	0.3130	H-1→I	0 47843
20 //	00,001	1.02	011	, 10	0.0100	H→L	0.52001
	$S_0 \rightarrow S_2$	1.92	647		0.9064	H-2→L	-0.13695
						H-1→L	0.51057
						H→L	-0.47092
	$S_0 \rightarrow S_3$	2.34	530		0.1881	H-2→L	0.65193
						H-1→L+1	0.10090
						H→L+1	-0.21809
1b ⁺ - <i>i</i>	$S_0 \rightarrow S_1$	1.77	700	702	0.4414	H-1→L	-0.44875
						H→L	0.54037
	$S_0 \rightarrow S_2$	1.97	630		1.0240	H-2→L	0.15884
						H-1→L	0.51829
						H→L	0.44391
	$S_0 \rightarrow S_3$	2.35	527		0.1316	H-2→L	0.62009
						H→L+1	-0.30807
1b ⁺ - <i>ii</i>	$S_0 \rightarrow S_1$	1.76	704	702	0.4258	H-1→L	0.44039
						H→L	0.54760
	$S_0 \rightarrow S_2$	1.95	635		0.9617	H-2→L	0.16250
						H-1→L	0.52590
						H→L	-0.43315
	$S_0 \rightarrow S_3$	2.34	529		0.1490	H-2→L	0.62225
4 .+ · 4 .+ ··		1 70	702		0 5000	H→L+1	0.29875
1C'- <i>i</i> , 1C'- <i>i</i>	$S_0 \rightarrow S_1$	1.76	703		0.5880	H-1→L	-0.14/53
						H→L	0.07505
	C₂→C₂	1 90	656	502	0 0505		0.13343
	30732	1.05	030	202	0.9303	⊓-⊥→L H_\I	0.16885
$1c^{+}i + H^{+}$	$\varsigma_{\alpha} \rightarrow \varsigma_{1}$	1 8/	674	668	0 9585		-0 10442
1c ⁺ - <i>ii</i> + H ⁺	JU / JI	1.04	0/4	000	0.5505	⊢⊥→L H→I	0.69856
	$S_0 \rightarrow S_2$	2 11	588		0 1557	H-1-	0.64355
			200		0.1007	H→L	-0.27374

Table S2 Selected parameters for the vertical excitation (UV-vis absorptions) of dyes **1a⁺-c⁺** and **1c⁺+H⁺** based on the optimized ground state geometries in water.

^{*a*} Oscillator strength. ^{*b*} H stands for HOMO and L stands for LUMO. ^{*c*} Coefficient of the wave function for each excitations.

dyes	Electronic transitions	Excitation energy) /nm	fa	Composition ^b	
		E/eV	λ/nm	Aexp./IIII	Ju	composition	CI
1a +- <i>i</i>	$S_0 \rightarrow S_1$	0.99	1253		0.0001	H→L	0.70704
	$S_0 \rightarrow S_2$	1.79	692	749	0.6541	H-2→L	0.24650
						H-1→L	0.66110
	$S_0 \rightarrow S_3$	2.22	557		0.6188	H-2→L	0.63765
						H-1→L	-0.25265
1a +- <i>ii</i>	$S_0 \rightarrow S_1$	1.44	859		0.2754	H-1→L	0.48779
						H→L	0.51099
	$S_0 \rightarrow S_2$	1.82	683	749	0.8649	H-1→L	0.50836
						H→L	-0.48692
1b ⁺- <i>i</i>	$S_0 \rightarrow S_1$	1.58	786		0.1911	H-1→L	0.64202
						H→L	-0.28502
	$S_0 \rightarrow S_2$	1.70	728	736	0.6799	H-2→L	-0.21337
						H-1→L	0.26429
						H→L	0.61837
	$S_0 \rightarrow S_3$	2.32	534		0.8169	H-2→L	0.62598
						H→L	0.19000
		0.00	4264		0.0000	H→L+1	0.25150
16 *- <i>ii</i>	$S_0 \rightarrow S_1$	0.98	1264	700	0.0000	H→L	0.70710
	$S_0 \rightarrow S_2$	1.80	687	/36	0.7395	H-2→L	0.27270
4 - + · 4 - + ··	C \ C	0.00	1004		0.0000	H-1→L	0.04/10
IC ⁻ - <i>i</i> , IC ⁻ - <i>i</i>	$S_0 \rightarrow S_1$	0.69	1804	C01	0.0000	H→L	0.70710
	$S_0 \rightarrow S_2$	1.80	689	691	0.7900	H-2→L	0.19000
1c ⁺ ; ⊥ Ц ⁺	C - \ C -	0.76	1641		0 0000	H-1→L	0.07087
$10^{-7} + 10^{-7}$	5 0 → 51	0.76	1041		0.0000	H→L	0.70709
IC -// Ŧ Ħ	$\varsigma_{\alpha} \rightarrow \varsigma_{\alpha}$	1 96	631	719	0 0078	H_2_>I	0 69752
	50 7 52	1.50	051	715	0.0070	H-1→I	0.11469
	$S_0 \rightarrow S_2$	2 02	615		0 3000	H-2→I	-0 11572
		2.02	010		0.0000	H-1→L	0.68645
	$S_0 \rightarrow S_8$	2.85	435		0.4055	H→I+1	0.57753
		2.00			2	H→L+2	0.24345
						H→L+3	0.13786
						H→L+4	0.25217

Table S3 Selected parameters for emission related of dyes **1a⁺-c⁺** and **1c⁺+H⁺** based on the optimized lowest singlet excited state geometries in water.

^{*a*} Oscillator strength. ^{*b*} H stands for HOMO and L stands for LUMO. ^{*c*} Coefficient of the wave function for each excitations.

Fig. S8 ¹³C NMR of 3.

Fig. S9 HRMS(ESI⁺) of 3.

Fig. S10 1 H NMR of 4.

Fig. S11 ¹³C NMR of 4.

Fig. S12 HRMS(ESI⁺) of 4.

Fig. S14 ¹³C NMR of 5.

Fig. S15 HRMS(ESI+) of 5.

Fig. S18 HRMS(ESI⁺) of 6.

Fig. S20 ¹³C NMR of dye 1a.

Fig. S21 HRMS(ESI⁺) of dye 1a.

Fig. S23 ¹³C NMR of dye 1b.

Fig. S24 HRMS(ESI⁺) of dye 1b.

Fig. S26 ¹³C NMR of dye 1c.

Fig. S27 HRMS(ESI⁺) of dye 1c.