Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Grafting of multi-sensitive PDMAEMA brushes onto carbon nanotubes by ATNRC: tunable thickening/thinning and self-assembly behaviors in aqueous solutions

Yeqiang Tan,‡ Wenqian Zhang,‡ Yanhui Li, Yanzhi Xia*, and Kunyan Sui*

Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China. E-mail: <u>kunyansui@163.com</u>.

Sample	Feed ratio ^a	M_{n}^{b}	$M_{ m w}/M_{ m n}^{ m b}$	f(wt.%) °	Graft density ^d
MWNTs-g-PDMAWMA ₅₀	50:1	4770	1.05	75.4	1/129
MWNTs-g-PDMAWMA ₁₀₀	100:1	8420	1.17	67.2	1/342
MWNTs-g-PDMAWMA ₁₅₀	150:1	11170	1.07	37.4	1/1558

 Table S1 Constituent parameters of MWNTs-g-PDMAEMA.

^a The ratio of molar weight of DMAEMA monomer to EBiB.

^b The molecular weight data of PDMAEMA determined by GPC.

^c The weight fraction of PDMAEMA in MWNTs-g-PDMAEMA calculated from TGA.

^d The average graft density (C/PDMAEMA chain) calculated from GPC and TGA.

Fig. S1 GPC traces of PDMAEMA. The single peaks of typical Gaussian distributions indicated formation of desired PDMAEMA homopolymer. The number-average molecular weight is 4770, 8420, 11170, and PDI (M_w/M_n) is 1.05, 1.17 and 1.07, respectively, clarifying that the ATRP polymerization of PDMAEMA were well-controlled.

Fig. S2 ¹H NMR spectra of MWNTs-g-PDMAEMA₁₀₀ in D₂O.

Fig. S3 FT-IR spectrum of MWNTs, MWNTs-COOH and MWNTs-g-PDMAEMA. In MWNTs-TEMPO clearly showed that the characteristic carboxyl group stretching vibrations appeared at 1700 cm⁻¹. The appearance of characteristic absorption bands at 2950 cm⁻¹ (C-H stretching of methyl and -CH₂- groups), 2821 and 2770 cm⁻¹ (C-H stretching of N-(CH₃)₂ group), 1726 cm⁻¹ (C=O stretching), 1454 cm⁻¹ (-CH₂- bending(scissors) vibration and CH₃ antisymmetric deformation), and 1150 cm⁻¹ (C-C-N bending) demonstrated the presence of PDMAEMA chains on MWNTs-g-PDMAEMA.

Fig. S4 TGA curves of pristine MWNTs (a), MWNTs-COOH (b), MWNTs-TEMPO (c), MWNTs-g-PDMAEMA150 (d), MWNTs-g-PDMAEMA100 (e), MWNTs-g-PDMAEMA50 (f), and PDMAEMA (g) powders.

Fig. S5 η as a function of β° for MWNTs-g-PDMAEMA₅₀ (a) MWNTs-g-PDMAEMA₁₅₀ (b) suspensions with different pH at 25 °C (C = 20 wt%).

Fig S6. η as a function of β for MWNTs-g-PDMAEMA₁₀₀ suspensions at various pH values, tempratures and concentration. It is obvious that no shear-thickening behavior take placed at all pH, temperatures and concentrations.

Fig. S7 η as a function of β for MWNT-g-PDMAEMA₁₅₀/*f*-PDMAEMA suspension with different concentration of *f*-PDMAEMAM at pH=14.

Fig. S8 η as a function of β^{2} for MWNT-g-PDMAEMA₅₀/*f*-PDMAEMA suspension with different concentration of

f-PDMAEMAM at pH=14.

Fig. S9 Temperature dependence of complex viscosity for MWNTs-g-PDMAEMA₁₀₀ aqueous solution at pH 7 and 12.

Fig. S10 Dynamic temperature ramp for MWNTs-g-PDMAEMA100 suspension (C = 20 wt%) at pH=7 (a) and 12 (b) monitored at 1 rad s⁻¹ with a temperature rate of 1 °C min⁻¹.