## **Supplementary Information**

## Mutagenesis of Precursor Peptide for the Generation of Nosiheptide Analogues

Shuzhen Wang, † Xulu Zheng †, Qi Pan and Yijun Chen\*

State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu Province 210009, People's Republic of China. E-mail: yjchen@cpu.edu.cn; Fax: 86-25-83271031; Tel.: 86-25-83271045.

† Shuzhen Wang and Xulu Zheng contributed equally to this work.

## Table of contents

| Table S1 $H^1$ and $C^{13}$ NMR chemical shifts of analogue 6 in DMSO-d6 ( $\delta$ in ppm). | 2  |
|----------------------------------------------------------------------------------------------|----|
| Table S2 $H^1$ and $C^{13}$ NMR chemical shifts of analogue 7 in DMSO-d6 ( $\delta$ in ppm). | 3  |
| Table S3 $H^1$ and $C^{13}$ NMR chemical shifts of analogue 8 in DMSO-d6 ( $\delta$ in ppm). | 4  |
| Table S4 Primers used in this study                                                          | 5  |
| Fig. S1 LC-TOF/MS analysis of analogue 6                                                     | 6  |
| Fig. S2 LC-TOF/MS analysis of analogue 7                                                     | 6  |
| Fig. S3 LC-TOF/MS analysis of analogue 8                                                     | 6  |
| Fig. S4 Structure and numbering system used for analogue 6                                   | 7  |
| Fig. S5 NMR spectra of analogue 6                                                            | 8  |
| Fig. S6 Structure and numbering system used for analogue 7                                   | 10 |
| Fig. S7 NMR spectra of analogue 7                                                            | 11 |
| Fig. S8 Structure and numbering system used for analogue 8                                   | 13 |
| Fig. S9 NMR spectra of analogue 8                                                            | 14 |
|                                                                                              |    |

| Assigment      | δ <sub>c</sub> , mult | δ <sub>H</sub> (J in Hz) | Assigment       | δ <sub>c</sub> , mult | δ <sub>H</sub> (J in Hz) |  |  |  |  |  |  |  |
|----------------|-----------------------|--------------------------|-----------------|-----------------------|--------------------------|--|--|--|--|--|--|--|
| Ind CO         | 181.415               |                          | But 3           | 129.109               | 6.53 (q, 1H)             |  |  |  |  |  |  |  |
| Glu CO         | 172.647               |                          | Pyr 4           | 126.894               | 6.43 (s, 1H)             |  |  |  |  |  |  |  |
| Thz(3) 2       | 170.594               |                          | Thz(5) 5        | 126.114               | 8.77 (s, 1H)             |  |  |  |  |  |  |  |
| Thz(4) 2       | 170.222               |                          | Thz(1) 5        | 125.893               | 8.51 (s, 1H)             |  |  |  |  |  |  |  |
| Ala CO         | 169.100               |                          | Thz(3) 5        | 125.080               | 8.28 (s, 1H)             |  |  |  |  |  |  |  |
| Thz(5) 2       | 166.483               |                          | Ind 6           | 124.908               | 7.25 (d, 1H)             |  |  |  |  |  |  |  |
| Thz(2) 2       | 166.097               |                          | Ind 3a          | 124.848               |                          |  |  |  |  |  |  |  |
| Dha CO         | 165.099               |                          | Ind 5           | 123.597               | 7.45 (d, 1H)             |  |  |  |  |  |  |  |
| Thz(1) 2       | 164.650               |                          | Thz(2) 5        | 118.658               | 8.48 (s, 1H)             |  |  |  |  |  |  |  |
| Thz(3) CO      | 163.471               |                          | Thz(4) 5        | 118.261               | 8.26 (s, 1H)             |  |  |  |  |  |  |  |
| Thz(2) CO      | 159.825               |                          | Ind 3           | 114.929               |                          |  |  |  |  |  |  |  |
| Thz(1) CO      | 159.568               |                          | Ind 7           | 103.524               | 7.41 (d, 1H)             |  |  |  |  |  |  |  |
| Thz(5) CO      | 159.480               |                          | Dha 3           | 66.326                | 6.50E(s) 5.73Z(s)        |  |  |  |  |  |  |  |
| Thz(4) 4       | 159.233               |                          | Glu 4           | 63.050                | 5.24 (s, 1H)             |  |  |  |  |  |  |  |
| Pyr 3          | 155.383               |                          | Glu4′           | 49.302                | 5.44 (s, 1H)             |  |  |  |  |  |  |  |
| Thz(1) 4       | 149.867               |                          | Ind 4'          | 47.587                | 5.70 (t <i>,</i> 1H)     |  |  |  |  |  |  |  |
| Thz(5) 4       | 148.940               |                          | Cys 2           | 44.634                | 5.99 (m, 1H)             |  |  |  |  |  |  |  |
| Thz(3) 4       | 148.940               |                          | Glu 3           | 38.944                | 4.06 (d, 2H)             |  |  |  |  |  |  |  |
| Thz(2) 4       | 147.306               |                          | Cys 3           | 38.666                | 3.93 (d, 2H)             |  |  |  |  |  |  |  |
| Pyr 6          | 138.776               |                          | Ala 2           | 29.630                | 5.79 (m, 1H)             |  |  |  |  |  |  |  |
| Ind 7a         | 137.827               |                          | But 4           | 19.481                | 1.73 (d, 3H)             |  |  |  |  |  |  |  |
| Pyr 2          | 136.522               |                          | Ind 3'          | 13.533                | 3.42 (m, 3H)             |  |  |  |  |  |  |  |
| Dha 2          | 134.433               |                          | Ala 3           | 11.913                | 3.63 (d, 3H)             |  |  |  |  |  |  |  |
| Ind 2          | 130.223               |                          |                 |                       |                          |  |  |  |  |  |  |  |
| Pyr 5          | 129.975               |                          |                 |                       |                          |  |  |  |  |  |  |  |
| But 2          | 129.763               |                          |                 |                       |                          |  |  |  |  |  |  |  |
| Ind 4          | 129.447               |                          |                 |                       |                          |  |  |  |  |  |  |  |
| Ind NH 10.81 ( | s, 1H); Dha NH        | 10.13 (s, 1H); But       | NH 9.57 (s, 1H) | ; Cys NH 8.09 (       | s, 1H)                   |  |  |  |  |  |  |  |

| Table S1 H <sup>1</sup> and C <sup>13</sup> NMR chemical shi | fts of analogue 6 in DMS | O-d6 (δ in ppm՝ |
|--------------------------------------------------------------|--------------------------|-----------------|
|--------------------------------------------------------------|--------------------------|-----------------|

| Assigment       | δ <sub>c</sub> , mult | δ <sub>н</sub> (J in Hz) | Assigment       | δ <sub>c</sub> , mult | δ <sub>н</sub> (J in Hz) |  |  |  |  |  |  |
|-----------------|-----------------------|--------------------------|-----------------|-----------------------|--------------------------|--|--|--|--|--|--|
| Ind CO          | 181.871               |                          | But 3           | 129.160               | 6.48 (q, 1H)             |  |  |  |  |  |  |
| Glu CO          | 172.810               |                          | Pyr 4           | 127.626               | 6.37 (s, 1H)             |  |  |  |  |  |  |
| Thz(3) 2        | 169.793               |                          | Thz(5) 5        | 127.362               | 8.86 (s, 1H)             |  |  |  |  |  |  |
| Thz(4) 2        | 169.221               |                          | Thz(1) 5        | 126.220               | 8.64 (s, 1H)             |  |  |  |  |  |  |
| Ser CO          | 168.690               |                          | Thz(3) 5        | 125.112               | 8.20 (s, 1H)             |  |  |  |  |  |  |
| Thz(5) 2        | 166.582               |                          | Ind 6           | 124.958               | 7.25 (d, 1H)             |  |  |  |  |  |  |
| Thz(2) 2        | 165.959               |                          | Ind 3a          | 124.852               |                          |  |  |  |  |  |  |
| Dha CO          | 165.054               |                          | Ind 5           | 124.410               | 7.56 (d, 1H)             |  |  |  |  |  |  |
| Thz(1) 2        | 160.400               |                          | Thz(2) 5        | 123.325               | 8.60 (s, 1H)             |  |  |  |  |  |  |
| Thz(3) CO       | 159.999               |                          | Thz(4) 5        | 120.181               | 8.11 (s, 1H)             |  |  |  |  |  |  |
| Thz(2) CO       | 159.758               |                          | Ind 3           | 118.680               |                          |  |  |  |  |  |  |
| Thz(1) CO       | 158.451               |                          | Ind 7           | 107.039               | 7.80 (d, 1H)             |  |  |  |  |  |  |
| Thz(5) CO       | 157.958               |                          | Dha 3           | 103.608               | 6.46E(s) 5.76Z(s)        |  |  |  |  |  |  |
| Thz(4) 4        | 157.713               |                          | Glu 4           | 66.565                | 5.52 (t, 1H)             |  |  |  |  |  |  |
| Pyr 3           | 150.518               |                          | Ser 3           | 65.935                | 5.67 (s, 1H)             |  |  |  |  |  |  |
| Thz(1) 4        | 149.839               |                          | Ind 4'          | 63.227                | 5.48 (m, 1H)             |  |  |  |  |  |  |
| Thz(5) 4        | 149.713               |                          | Ser 2           | 54.007                | 5.50 (m, 1H)             |  |  |  |  |  |  |
| Thz(3) 4        | 149.369               |                          | Cys 2           | 48.929                | 4.05 (d, 1H)             |  |  |  |  |  |  |
| Thz(2) 4        | 148.036               |                          | Glu 2           | 44.791                | 4.02 (d, 1H)             |  |  |  |  |  |  |
| Pyr 6           | 140.978               |                          | Glu 3           | 28.903                | 3.49 (m, 2H)             |  |  |  |  |  |  |
| Ind 7a          | 137.585               |                          | Cys 3           | 28.932                | 3.41 (m, 2H)             |  |  |  |  |  |  |
| Pyr 2           | 135.609               |                          | But 4I          | 13.336                | 1.78 (d, 3H)             |  |  |  |  |  |  |
| Dha 2           | 134.358               |                          | Ind 3'          | 12.637                | 2.73 (s, 3H)             |  |  |  |  |  |  |
| Ind 2           | 130.683               |                          |                 |                       |                          |  |  |  |  |  |  |
| Pyr 5           | 129.963               |                          |                 |                       |                          |  |  |  |  |  |  |
| But 2           | 129.798               |                          |                 |                       |                          |  |  |  |  |  |  |
| Ind 4           | 129.607               |                          |                 |                       |                          |  |  |  |  |  |  |
| Ind NH 11.29 (s | s, 1H); Dha NH 10     | D.12 (s, 1H); But I      | NH 9.70 (s, 1H) | ; Cys NH 8.89 (s,     | 1H)                      |  |  |  |  |  |  |

Table S2 H<sup>1</sup> and C<sup>13</sup> NMR chemical shifts of analogue 7 in DMSO-d6 ( $\delta$  in ppm)

| Assigment      | δ <sub>c</sub> , mult | δ <sub>H</sub> (J in Hz) | Assigmen<br>t  | δ <sub>c</sub> , mult | δ <sub>H</sub> (J in Hz) |
|----------------|-----------------------|--------------------------|----------------|-----------------------|--------------------------|
| Ind CO         | 181.895               |                          | But 3          | 127.101               | 6.44 (q <i>,</i> 1H)     |
| Glu CO         | 172.994               |                          | Pyr 4          | 126.506               | 6.35 (s, 1H)             |
| Thz(3) 2       | 170.014               |                          | Thz(5) 5       | 126.329               | 8.78 (s, 1H)             |
| Thz(4) 2       | 169.594               |                          | Thz(1) 5       | 125.077               | 8.57 (s, 1H)             |
| Thz(5) 2       | 167.321               |                          | Thz(3) 5       | 124.841               | 8.46 (s, 1H)             |
| Val CO         | 166.928               |                          | Ind 6          | 123.442               | 7.19 (s, 1H)             |
| Thz(2) 2       | 166.686               |                          | Ind 3a         | 120.036               |                          |
| Dha CO         | 165.060               |                          | Ind 5          | 117.587               | 7.57 (d, 1H)             |
| Thz(1) 2       | 164.004               |                          | Thz(2) 5       | 115.114               | 8.46 (s, 1H)             |
| Thz(3) CO      | 163.183               |                          | Thz(4) 5       | 103.824               | 8.20 (s, 1H)             |
| Thz(2) CO      | 159.674               |                          | Ind 3          | 99.766                |                          |
| Thz(1) CO      | 159.129               |                          | Ind 7          | 66.359                | 7.68 (d, 1H)             |
| Thz(5) CO      | 158.513               |                          | Dha 3          | 65.810                | 6.35E(s) 5.78Z(s)        |
| Thz(4) 4       | 153.810               |                          | Glu 4          | 56.599                | 5.60 (t, 1H)             |
| Pyr 3          | 153.037               |                          | Ind 4'         | 49.910                | 5.78 (s, 1H)             |
| Thz(1) 4       | 150.368               |                          | Cys 2          | 45.117                | 6.04 (m, 1H)             |
| Thz(5) 4       | 149.605               |                          | Glu 2          | 40.344                | 5.86 (m, 1H)             |
| Thz(3) 4       | 148.779               |                          | Glu 3          | 40.066                | 4.17 (m, 2H)             |
| Thz(2) 4       | 147.621               |                          | Cys 3          | 29.730                | 3.70 (d, 2H)             |
| Pyr 6          | 138.112               |                          | Val 2          | 28.943                | 5.08 (d, 1H)             |
| Ind 7a         | 135.266               |                          | But 4          | 18.477                | 1.70 (d, 3H)             |
| Pyr 2          | 134.419               |                          | Ind 3'         | 12.644                | 2.30 (m, 3H)             |
| Dha 2          | 130.447               |                          | Val 4          | 13.361                | 1.23 (m, 3H)             |
| Ind 2          | 130.054               |                          | Val 4'         | 11.657                | 1.13 (m, 3H)             |
| Pyr 5          | 129.927               |                          |                |                       |                          |
| But 2          | 129.648               |                          |                |                       |                          |
| Ind 4          | 129.020               |                          |                |                       |                          |
| Ind NH 11.10 ( | s, 1H); Dha NH        | 10.05 (s, 1H); But       | NH 9.07 (s, 1H | 1)                    |                          |

Table S3 H<sup>1</sup> and C<sup>13</sup> NMR chemical shifts of analogue 8 in DMSO-d6 ( $\delta$  in ppm)

| Primer Name   | Primer Sequence (5'-3')                 |
|---------------|-----------------------------------------|
| nosM-hF       | <u>GGATCC</u> ACCAGGCTCACCAGCTCGGCGGAGA |
| nosM-hR       | AAGCTTTCCTCGCGGGGGATGCCGTCGAACA         |
| 1001AF        | CACCCAGCCCTGAACCACCTCCACG               |
| 1001AR        | GGATGGCCTGGACCCAGTCGCAGAACG             |
| primer C2S-A  | GCACTCGCAGGTGGTCGACGAGGCCGACA           |
| primer C2S-B  | TGTCGGCCTCGTCGACCACCTGCGAGTGC           |
| primer C5S-A  | AGCACTCCGAGGTGGTGCACGAGGCCGACA          |
| primer C5S-B  | TGTCGGCCTCGTGCACCACCTCGGAGTGCT          |
| primer C7S-A  | CAGGAGGAGCAGGAACAGCACGACTCGCAG          |
| primer C7S-B  | CTGCGAGTCGTGCTGTTCCTGCTCCTCCTG          |
| primer C9S-A  | CAGGAGGAGCAGGAGGAGCAGCACTCGCAG          |
| primer C9S-B  | CTGCGAGTGCTGCTCCTCCTGCTCCTCCTG          |
| primer C11S-A | TCCATCAGGAGGACGAGGAACAGCAGCACT          |
| primer C11S-B | AGTGCTGCTGTTCCTCGTCCTCCTGATGGA          |
| ТЗА-А         | ACTCGCAGGTGGCGCACGAGGCCGACATGAC         |
| ТЗА-В         | GTCATGTCGGCCTCGTGCGCCACCTGCGAGT         |
| T3S-A         | CAGCACTCGCAGGTGGAGCACGAGGCCGACA         |
| ТЗЅ-В         | TGTCGGCCTCGTGCTCCACCTGCGAGTGCTG         |
| ТЗV-А         | CAGCACTCGCAGGTGACGCACGAGGCCGACA         |
| ТЗV-В         | TGTCGGCCTCGTGCGTCACCTTGCGAGTGCTG        |
| T3D-A         | CGCAGGTGTCGCACGAGGCCGACATGACCTT         |
| ТЗД-В         | TGTCGGCCTCGTGCGACACCTGCGAGTGCTG         |
| ТЗК-А         | CAGCACTCGCAGGTCTTGCACGAGGCCGACA         |
| ТЗК-В         | TGTCGGCCTCGTGCAAGACCTGCGAGTGCTG         |

Fig. S1 LC-TOF/MS analysis of analogue 6



## Fig. S2 LC-TOF/MS analysis of analogue 7.



Fig. S3 LC-TOF/MS analysis of analogue 8.



Fig. S4 Structure and numbering system used for analogue 6





Fig. S5 NMR spectra of analogue 6. (A) H<sup>1</sup>NMR (303 K, DMSO-d6). (B) C<sup>13</sup>NMR (303 K, DMSO-d6).

А





Fig. S6 Structure and numbering system used for analogue 7.



Fig. S7 NMR spectra of analogue 7. (A) H<sup>1</sup>NMR (303 K, DMSO-d6). (B) C<sup>13</sup>NMR (303 K, DMSO-d6).

А





В



Fig. S8 Structure and numbering system used for analogue 8.







| PC   | GB   | WDW | 3E         | SI    | SFO1 3     | PLI   | P1   | NUC1 | CHAN   | D1         | IE    | DE   | DW     | RG | AQ        | FIDRES   | EWS      | DS | SN | SOLVENT | ID    | PULPROG | PROBHD 5 mm | INSTRUM | Time  | Date_    | PROCNO | STATE TAL | EXDNO. |
|------|------|-----|------------|-------|------------|-------|------|------|--------|------------|-------|------|--------|----|-----------|----------|----------|----|----|---------|-------|---------|-------------|---------|-------|----------|--------|-----------|--------|
| 1.00 | 0.20 | E   | 00.1299977 | 32768 | 00.1324010 | -1.00 | 5.65 | 1H   | NEL 11 | 1.00000000 | 298.0 | 6.00 | 83.400 | 32 | 2.7329011 | 0.182959 | 5995.204 | 0  | 41 | DMSO    | 32768 | Zg30    | PHONP SW1   | av300   | 13.43 | 20150729 | 1      |           | 10     |
|      | 112  |     | MHZ        |       | MHZ        | dB    | USEC |      |        | SEC        | ×     | usec | USEC   |    | SEC       | HZ       | HZ       |    |    |         |       |         |             |         |       |          |        |           |        |



В