Supplementary Information

for

Effect of NOx on product yields and Arrhenius parameters of gas-phase oxidation of β-ocimene initiated by OH[.] radicals

Elizabeth Gaona-Colmán^a, María B. Blanco^a, Ian Barnes^b and Mariano A. Teruel^{a*}

^a Instituto de Investigaciones en Fisicoquímica de Córdoba (I.N.F.I.Q.C.), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina.
^b Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Physikalische Chemie & Theoretische Chemie, Gauss Strasse 20, 42119 Wuppertal, Germany.
*Corresponding author: mteruel@fcq.unc.edu.ar.

Content Summary

Infrared spectra for a β -ocimene/H₂O₂/air reaction mixture and reaction products (S1), and a β -ocimene/H₂O₂/NO_X/air reaction mixture and reaction products (S2).

Concentration-time profiles plots for a β -ocimene/H₂O₂/air reaction mixture and the reaction products (S3), and a β -ocimene/H₂O₂/NO_x/air reaction mixture and the reaction products (S4).

Yield plots for the reaction of OH radicals with β -ocimene/H₂O₂/air reaction mixture in the absence of NO_x (S5) and in the presence of NO_x (S6)

Simplified mechanisms for the OH-radical initiated oxidation of β-ocimene (S7, S8, and S9)

Figure S1: Panel A shows the infrared spectrum of a β -ocimene/H₂O₂/air reaction mixture after irradiation and subtraction of residual β -ocimene. Panels B, C, D, E and F show reference spectra of acetone, methyl vinyl ketone, formaldehyde, glycolaldehyde, and acetic acid, respectively. Panel G shows the residual product spectrum obtained after subtraction of features due to the reference spectra from the spectrum in panel A.

Figure S2: Panel A shows the infrared spectrum of a β -ocimene/H₂O₂/NO_X/air reaction mixture after irradiation and subtraction of residual β -ocimene. Panel B, C, D, E and F show reference spectra of acetone, methyl vinyl ketone, formaldehyde, glycolaldehyde, and peroxy acetyl nitrate, respectively. Panel G shows the residual product spectrum obtained after subtraction of features due to the reference spectra from the spectrum in panel A.

Figure S3: Concentration-time profiles of ocimene and the reaction products formaldehyde, acetone, methyl vinyl ketone, glycolaldehyde and acetic acid (in the absence of NO_x) obtained from the irradiation of a β -ocimene/H₂O₂/air reaction mixture.

Figure S4: Concentration-time profiles of ocimene and the reaction products formaldehyde, acetone, methyl vinyl ketone, glycolaldehyde and peroxy acetyl nitrate (in the presence of NO_x) obtained from the irradiation of a β -ocimene/H₂O₂/NO_x/air reaction mixture.

Figure S5: Plots of the concentrations of the reaction products formaldehyde (\circ), acetone (Δ), acetic acid (∇), methyl vinyl ketone (\triangleleft) and glycolaldehyde (\triangleright) as a function of reacted β -ocimene obtained from the irradiation of a β -ocimene/H₂O₂/air reaction mixture in the absence of NO_x.

Figure S6: Plots of the concentrations of the reaction products formaldehyde (\circ), acetone (Δ), methyl vinyl ketone (\triangleleft), glycolaldehyde (\triangleright) and peroxy acetyl nitrate (\diamond) as a function of reacted β -ocimene obtained from the irradiation of a β -ocimene/H₂O₂/air reaction mixture in the presence of NO_x.

Figure S7. Simplified mechanism for the OH·-radical initiated oxidation of β -ocimene via addition of OH· to the double bond binding C₆ and C₇.

Figure S8. Simplified mechanism for the OH-radical initiated oxidation of β -ocimene via addition of OH to the double bond binding C₁ and C₂.

Figure S9. Simplified mechanism for the OH-radical initiated oxidation of β -ocimene via addition of OH to the double bond binding C₃ and C₄.