Copper (II)-doped semiconducting polymer dots for nitroxyl imaging in live cells

Xu Wu,^a Li Wu,^a I-Che Wu,^a and Daniel T. Chiu^{a*}

Department of Chemistry, University of Washington, Seattle, WA, 98195-1700, USA

Email: chiu@uw.edu

Supporting Information

Materials and Characterizations. Poly[(9,9-dioctylfluorenyl-2,7-diyl)-*co*-(1,4-benzo-{2,1'-3}-thiadazole)] (PFBT, MW 73000 Da, polydispersity, 3.0) and polystyrene graft ethylene oxide functionalized with carboxyl groups (PS-PEG-COOH, MW 21700 Da of PS moiety; 1200 Da of PEG-COOH; polydispersity, 1.25) were purchased from Polymer Source Inc. (Quebec, Canada). Angeli's salt was purchased from Cayman Chemical (Michigan, USA). All other chemicals and solvents, including tetrahydrofuran and CuCl₂, were purchased from Sigma-Aldrich unless indicated elsewhere. The carboxyl-functionalized PFBT (PC₃₀, MW, 9500 Da; polydispersity, 1.2; carboxyl percentage, 30%) was prepared according to our previous report.¹

A transmission electron microscope (FEI Tecnai F20, 200 kV) was used to study the size and morphology of the Pdots. The hydrodynamic size and zeta potential of Pdots were investigated with a dynamic light scattering instrument (Malvern Zetasizer Nano ZS). UV-Vis spectra of the Pdots were measured with a DU 720 scanning spectrophotometer (Beckman Coulter, Inc., CA USA). A Fluorolog-3 fluorimeter (HORIBA Jobin Yvon, NJ USA) was used to measure the fluorescence spectra of Pdots, and the quantum yields were obtained with a Hamamatsu photonic multichannel analyzer C10027 equipped with CCD integrating sphere.

Preparation of Pdot-PFBT/PC₃₀-Cu²⁺. Pdot-PFBT/PC₃₀-Cu²⁺ were prepared using a nanoprecipitation method. Briefly, a 5-mL tetrahydrofuran (THF) solution containing 0.25 mg of PFBT-C₃₀, and 0.22 mg of CuCl₂ was stirred for 1 hour. Then, the 5 mL PC₃₀-Cu²⁺ mixture was mixed with 0.25 mL of 1 mg/mL PFBT (73K) and 0.1 mL of 20 µg/mL of PS-PEG-COOH with shaking and then quickly injected into 10 mL of water under vigorous sonication. The extra THF was removed by evaporating with protection of nitrogen gas. The final Pdot-PFBT/PC₃₀-Cu²⁺ solution was filtrated through a 0.45 µm cellulose membrane filter. Then, the Pdot-PFBT/PC₃₀-Cu²⁺ was concentrated with centrifugal filtration (MW 100KDa) and passed through gel filtration using Sephacryl HR-300 gel media to purify it.

Table S1. Summary of photophysical properties of Pdot-PFBT/PC₃₀ and Pdot-PFBT/PC₃₀-Cu²⁺.

	λ _{ex} (nm)	λ _{em} (nm)	QY ^ª (%)
Pdot-PFBT/PC ₃₀	450	540	15.5
Pdot-PFBT/PC ₃₀ -Cu ²⁺	450	540	3.8

^aQuantum yield was measured at a 450-nm excitation.

Fig. S1 The effect of amount of $CuCl_2$ on the size and quantum yield of Pdots. Based on the results, 0.22 mg was chosen as the optimal amount of $CuCl_2$ as it did not increase the size of Pdots but quenched the Pdots efficiently.

Fig. S2 pH effect on the fluorescence intensity of Pdot-PFBT/PC₃₀-Cu²⁺ (1ppm). λ_{ex} = 450 nm, λ_{em} = 537 nm.

Fig. S3 Cell viability of MCF-7 after incubation with different concentrations of Pdot-PFBT/PC₃₀- Cu^{2+} for 24 hours.

References:

1. X. Zhang, J. Yu, C. Wu, Y. Jin, Y. Rong, F. Ye and D. T. Chiu, ACS Nano, 2012, 6, 5429-5439.