Investigation of a sensing approach based on a rapid reduction of azide to selectively measure bioavailability of H₂S

Gunwoo Kim,^a Eunju Jang,^a Alexis M Page,^b Ting Ding,^a Kimberly A. Carlson,^b and Haishi Cao^{a*}

Department of Chemistry, University of Nebraska at Kearney, Kearney NE 68849, USA Department of Biology, University of Nebraska at Kearney, Kearney NE 68849, USA

Contents:

Experimental	.S2
Absorption and emission spectra of 6-amino-2,3-NI	S3
NMR Spectra (¹ H and ¹³ C)	S4
High resolution mass spectrometry of AHS and NHS	58

Experimental

Apparatus

Absorbance spectra were collected by Cary Series Uv-vis Spectrophotometer (Agilent Technologies). Fluorescence measurements were all performed by using a FluoroMax-4 Spectrofluorometer (Horiba Jobin Yvon, USA). All of fluorescence spectra were recorded in a 1 cm quartz cuvette. The excitation and emission slits were set at 2 nm. ¹H and ¹³C NMR spectra were recorded on (¹H 300MHz, ¹³C 75MHz) Bruker 300 Ultra-Shield spectrometer at room temperature. A TE2000-S inverted fluorescent microscope (Nikon, Melville, NY) were used for cell imaging.

Reagents

All reagents used for synthesis and measurements were purchased from Sigma-Aldrich (MO, USA), Fisher Scientific (USA) and Acros Organics (USA) in analytical grade and used as received, unless otherwise stated.

Cell imaging

U937 culture. U937 cells (human monocyte cell line; American Type Culture Collection (ATCC), Manassas, VA) were maintained at 37°C with 5% CO₂ in T-25 flasks in RPMI 1640 (ATCC) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco Invitrogen Corporation, Grand Island, NY) and 1% penicillin-streptomycin (ATCC). For imaging, cells were placed in a 50-mL conical tube and centrifuged at 1,000xg for 5 min. The supernatant was removed and the pellet resuspended in 7 mL of supplemented RPMI 1640 medium. The cells were counted using trypan blue (Avocado Research Chemicals Ltd., Lancashire, England) and a hemocytometer (Bright-Line, Horsham, PA) and diluted to a density of 1 x 10⁶ cells/mL. Into 8-well chamber slides (Falcon[™], Bedford, MA), 1 x 10⁵ cells were added to each well. The cells were incubated for 48h. After 48h, the AHS sensor was added to three wells at 5 mM, 4 wells at 10 mM, and 1 well did not have the sensor added. This was incubated for 10 min. Following incubation, H₂S was added to individual wells in concentrations of 0, 2.5, 5, or 10 mM (AHS at 5 mM with H₂S at either 2.5, 5, or 10 mM; AHS at10 mM with H₂S at either 0, 2.5, 5, or 10 mM; and AHS at 0 mM with H₂S at 10 mM). This was incubated for 10 min. After incubation, the supernatant was removed by aspiration and the slides were mounted (Immu-Mount; Thermo, Pittsburgh, PA). Following mounting of the slides, the cells were visualized using a TE2000-S inverted fluorescent microscope (Nikon, Melville, NY).

Fig. S1. The aborption and emission spectra of 6-amino-2,3-NI in different solvents at 25 °C.

Compound 1

Compound 2

AHS

HRMS for NHS

Elemental Composition Report

Page 1

Multiple Mass Analysis: 4 mass(es) processed Tolerance = 15.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 8444 formula(e) evaluated with 49 results within limits (all results (up to 1000) for each mass)

Cao, Nitro 60102 990 (16.487) Cm (9	90:1035-279:326)					255	1155						TOF M	S El+
100			353.	1010			300.	1155						2	0.0664
1															
-					354.1	1064									
%															
-															
-				353.30	073	254 2044			356.	193					
35	1.0976	2 352.0943 352.276	9	í.		354.2914		355.2927	2	356	5.2879	357.13	223 35	7.3237	
351	.00	352.00	353.0	0	354.0	0	355.0	10	356.0	5	1.1.1.1	357.00			111/2
Minimum	20.00					1 5									
Maximum:	100.00			200.0	15.0	50.0									
				_					_	_					
Mass	RA	Calc. Mass	Ĩ	nDa	PPM	DBE		Score	Fo	ormul	la				
353.1010	92.72	353.1012		-0.2	-0.5	13.0		n/a	12	2C18	H15	N3	05		
		353.1007		0.3	0.8	17.5		n/a	12	2C22	13C	H14	N	03	
		353.1025		-1.5	-4.3	12.5		n/a	10	2C20	H17	06	04		
		353.0994		1.6	4.6	18.0		n/a	12	2C20	13C	H12	N4	02	
		353.1034		-2.4	-6.8	22.0		n/a	12	2C25	13C	H12	N2		
		353.1039		-2.9	-8.1	17.5		n/a	12	2C21	H13	N4	02		
		353.0980		3.0	8.4	13.0		n/a	12	2C19	13C	H16	06		
		353.1052		-4.2 1 3	-11.5	12 5		n/a n/a	14	C23	H15	N U	J3 N3	05	
		353.0966		4.4	12.2	21.5		n/a	12	2C27	H13	0	14.5	0.5	
354.1064	65.13	354.1059	(0.5	1.5	12.5		n/a	12	2C19	13C	H17	06		
		354.1072	3	-0.8	-2.3	17.5		n/a	12	2C20	13C	H13	N4	02	
		354.1077		-1.3	-3.5	13.0		n/a	12	2C16	H14	N6	04		
		354.1045		1.9	5.3	13.0		n/a	12	2C17	13C	H15	N3	05	
		354.1045		-2 1	5.5 -6 1	17 0		n/a n/a	14	0027	H14 13C	H15	N	03	
		354.1090		-2.6	-7.3	12.5		n/a	12	2C18	H16	N3	05	05	
		354.1032		3.2	9.1	13.5		n/a	12	2C15	13C	H13	N6	04	
		354.1031		3.3	9.3	21.5		n/a	12	2C25	H12	NЗ			
		354.1103	3	-3.9	-11.1	L 12.0		n/a	12	2C20	H18	06			
		354.1112		-4.8	-13.6	5 21.5		n/a	12	2C25	13C	H13	N2		
355 1155	100 00	354.1117		-5.3	-14.3	12 5		n/a n/a	10	C16	H14	N4 N6	02		
555.1155	100.00	355.1150		0.5	1.3	17.0		n/a	12	2C20	13C	H14	N4	02	
		355.1164		-0.9	-2.5	16.5		n/a	12	2C22	13C	H16	N	03	
		355.1168		-1.3	-3.7	12.0		n/a	12	2C18	H17	N3	05		
		355.1137		1.8	5.1	12.0		n/a	12	2C19	13C	H18	06		
		355.1182		-2./	- / . 5	11.5		n/a n/a	12	C20	13C	U16	M2	05	
		355.1123	-	3.2	9.0	20.5		n/a	12	C27	H15	0	IND	05	
		355.1191		-3.6	-10.0	21.0		n/a	12	2C25	13C	H14	N2		
		355.1195		-4.0	-11.3	3 16.5		n/a	12	2C21	H15	N4	02		
		355.1110		4.5	12.6	13.0		n/a	12	2C15	13C	H14	N6	04	
256 1102	00.00	355.1109		4.6	12.8	21.0		n/a	12	2C25	H13	N3	NTC	0.4	
356.1193	20.03	356.1188).5) 5	1.3	12.5		n/a n/a	14	C15	13C H14	M3	NЮ	04	
		356.1201		-0.8	-2.3	20.0		n/a	12	2C27	H16	0			
		356.1202		-0.9	-2.5	12.0		n/a	12	2C17	13C	H17	N3	05	
		356.1215		-2.2	-6.2	11.5		n/a	12	2C19	13C	H19	06		
		356.1161		3.2	9.0	16.0		n/a	12	2C22	H16	N2	03		
		356.1229		-3.6	-10.0) 16.5		n/a	12	2C20	13C	H15	N4	02	
		356 1233		-4 0	-11 1	20.5		n/a n/a	1 /	C16	13C	N6	04		
		356.1147		4.6	12.8	16.5		n/a	12	2C20	H14	N5	02		
		356.1242		-4.9	-13.8	3 16.0		n/a	12	2C22	13C	H17	N	03	
		356.1143	5	5.0	14.0	21.0		n/a	12	2C24	13C	H13	N3		

HRMS for AHS

Elemental Composition Report

Tolerance = 15.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron lons 1576 formula(e) evaluated with 8 results within limits (all results (up to 1000) for each mass)

Cao, Azide 60103 656 (10.3	936) AM (Cen	n,6, 90.00, Ht,7000.0,0.	00,0.69); Cm 351.	(597:689-91:) 1318	213)	352.1395				TOF MS EI+ 9.41e4
349.4169	350.00	0.1323 350.3657	350.9707	351.372	3	352 00	.3103		353.14	84 353.3256
Minimum: Maximum:	20.00		200.0	15.0	-1.5 50.0	002.00	002.00		000.00	
Mass	RA	Calc. Mass	mDa	PPM	DBE	Score	Formul	a		
351.1318	100.00	351.1313 351.1327 351.1331 351.1300 351.1340 351.1345 351.1287 351.1287	0.5 -0.9 -1.3 1.8 -2.2 -2.7 3.1 -4.0	1.3 -2.5 -3.8 5.1 -6.4 -7.6 8.9 -11.4	18.0 17.5 13.0 13.0 17.0 12.5 13.5 17.5	n/a n/a n/a n/a n/a n/a n/a	12C20 12C22 12C18 12C19 12C24 12C20 12C17 12C21	13C 13C H17 13C 13C H19 13C H15	H14 N6 H16 N3 N5 O3 H18 N2 H18 O2 N2 O4 H16 N5 N6	0 04 03