Heavily N-doped monolayer graphene electrodes used for high-performance N-channel polymeric thin film transistors

Guoqing Zhou, Guoxing Pan, Linzhi Wei, Tian Li and Fapei Zhang*

High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, P. R.

China

*Address correspondence to fzhang@hmfl.ac.cn

a)			b)			
element	weight ratio	atomic ratio	element	weight ratio	atomic ratio	
С	6.30	11.56	С	4.85	8.97	
Si	24.98	8 34.45 3 53.99	Si	26.8	37.2	
51			0	68	53.77	
0	68.73		Cs	0.34	0.06	
total	100		total	100		

Table S1. Element contents for pristine graphene (a) and the Cs_2CO_3 - doped graphene surface (b) estimated from energy dispersive spectroscopy (EDS) measurements.

Figure S1 EDS elemental mapping for pristine graphene (a) and the Cs_2CO_3 - doped graphene surface (b).

Figure S2 UPS spectra near the secondary electron cut-off region (a) and near the onset region (b) obtained from pristine graphene and the Cs_2CO_3 doped graphene, respectively. The value of work function (Φ) is determined via the relation $\Phi = hv - E_{cut-off}$, where hv is the photon energy of synchrotron light source (170 eV) and E_{cutoff} is the binding energy of secondary electron cut-off.

Figure S3 (a) AFM height image and (b) the profile of a highlighted line for the annealed P(NDI2OD-T2) film spin-coated on pristine graphene; (c) AFM height and (d) phase image for the annealed P(NDI2OD-T2) film spin-coated on the SiO₂/Si substrate, respectively.

Figure S4 (a) Specular scan X-ray diffraction (XRD) pattern and (b) synchrotronbased 2D grazing incidence X-ray diffraction (GIXRD) pattern of the P(NDI2OD-T2) film deposited on the Cs_2CO_3 doped graphene sheet (transferred on the SiO₂/Si substrate). The sample was annealed at 110 °C for 4 h in the nitrogen atmosphere. The incidence angle of X-ray in the GIXRD experiment is 0.20°

Figure S5. Channel length dependence of the output curves (I_D-V_D) at a gate voltage of 50V for the OFETs of P(NDI2OD-T2) using pristine graphene (a) and the Cs₂CO₃-doped graphene (b) as the S/D electrodes.