Supporting Information of

New Dimeric and Trimeric Erythrina Alkaloids from Erythrina variegata

Bing-Jie Zhang^{a,b}, Bin Wu^a, Mei-Fen Bao^a, Ling Ni^{a,b}, Xiang-Hai Cai^{*,a}

Affiliation

^a State Key Laboratory of Phytochemistry and Plant Resources in West China,

Kunming Institute of Botany, Chinese Academy of Scienes, Kunming 650201,

People's Republic of China

^b University of Chinese Academy of Sciences, Beijing 100039, People's Republic of

China

Correspondence

Prof. Dr. Xiang-Hai Cai, State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming 650201, China. E-mail: xhcai@mail.kib.ac.cn. Phone: +86 871 65223242; Fax: +86 871 65223188

Contents

1. Structures of erythrivarines C–G (1-5) and their units, erythrinine (6) and 8-oxoerythrinine (7).

Figure S1: ¹ H NMR spectrum of erythrivarine C (1)	P04
Figure S2: ¹³ C NMR spectrum of erythrivarine C (1)	P06
Figure S3: HSQC spectrum of erythrivarine C (1)	P07
Firgure S4: HMBC spectrum of erythrivarine C (1)	P09
Figure S5: ¹ H- ¹ H COSY spectrum of erythrivarine C (1)	P10
Figure S6: ROESY spectrum of erythrivarine C (1)	P11
Figure S7: ¹ H NMR spectrum of erythrivarine D (2)	P12
Figure S8: ¹³ C NMR spectrum of erythrivarine D (2)	P13
Figure S9: HSQC spectrum of erythrivarine D (2)	P14
Figure S10: HMBC spectrum of erythrivarine D (2)	
Figure S11: ¹ H- ¹ H COSY spectrum of erythrivarine D (2)	
Figure S12: ROESY spectrum of erythrivarine D (2)	P17

2. NMR spectroscopic data of dimeric erythrivarines C-D (1-2)

3、 NMR spectroscopic data of trimeric erythrivarines F-G (3-5)

P18
P20
P21
P23
P25
P28
P30
P31
P32
P33
P35
P36
P38
P39
P40

4. NMR spectroscopic data of erythrinine (6) and 8-oxo-erythrinine (7)

Figure S30: ¹ H NMR spectrum of 8-oxo-erythrinine (6)	P41
Figure S31: ¹³ C NMR spectrum of 8-oxo-erythrinine (6)	P42
Figure S32: ¹ H NMR spectrum of 8-oxo-erythrinine (7)	P43
Figure S33: ¹³ C NMR spectrum of 8-oxo-erythrinine (7)	P44

5、 UPLC-MS-MS chromatograms of 1-5

Figure	S34.	The	characteristic	peak	obtained by	UPL	C-MS-	MS of	erythrivarin	e C (1)	P46
Figure	S35.	The	characteristic	peak	obtained by	UPL	C-MS-	MS of	erythrivarin	e D (2)	P48
Figure	S36.	The	characteristic	peak	obtained by	UPL	C-MS-	MS of	erythrivarin	e E (3)	P50
Figure	S37.	The	characteristic	peak	obtained by	UPL	C-MS-I	MS of	erythrivarin	e F (4)	P52
Figure	S38.	The	characteristic	peak	obtained by	UPL	C-MS-	MS of	erythrivarin	e G (5)	P54

6, The CD and UV chromatography of the unit of erythrivarine C (1)

1. Structures of erythrivarines C–G (1-5) and their units, erythrinine (6) and 8-oxoerythrinine (7).

2、NMR spectroscopic data of dimeric erythrivarines C-D (1-2) *Figure S1.* ¹H NMR spectrum of Erythrivarine C (1)

Figure S2. ¹³C NMR spectrum of erythrivarine C (1)

Figure S4. HMBC spectrum of erythrivarine C (1)

Figure S5. ¹H-¹H COSY spectrum of erythrivarine C (1)

Figure S7. ¹H NMR spectrum of erythrivarine D (2)

Figure S8. ¹³C NMR spectrum of erythrivarine D (2)

fl (ppm)

Figure S10. HMBC spectrum of erythrivarine D (2)

Figure S11. ¹H-¹H COSY spectrum of erythrivarine D (2)

3、NMR spectroscopic data of trimeric erythrivarines F-G (3-5)

Figure S13. ¹H NMR spectrum of erythrivarine E (3)

Expanded ¹H NMR spectrum of erythrivarine E (**3**)

Figure S14. ¹³C NMR spectrum of erythrivarine E (3)

Figure S15. HSQC spectrum of erythrivarine E (3)

Figure S16. HMBC spectrum of erythrivarine E (3)

Figure S18. ¹H NMR spectrum of erythrivarine F (4)

Expanded ¹H NMR spectrum of erythrivarine F (4)

Figure S23. ROESY spectrum of erythrivarine F (4)

Figure S24. ¹H NMR spectrum of erythrivarine G (5)

and the second se

Figure S25. ¹³C NMR spectrum of erythrivarine G (5)

12

Figure S26. HSQC spectrum of erythrivarine G (5)

Figure S28. ¹H-¹H COSY spectrum of erythrivarine G (5)

Figure S29. ROESY spectrum of erythrivarine G (5)

4. NMR spectroscopic data of erythrinine (6) and 8-oxo-erythrinine (7)

Figure S30: ¹H NMR spectrum of erythrinine (6)

Figure S31: ¹³C NMR spectrum of erythrinine (6)

Figure S32: ¹H NMR spectrum of 8-oxo-erythrinine (7)

Figure S33. ¹³C NMR spectrum of 8-oxo-erythrinine (7)

5 UPLC-MS-MS analysis of the polymeric alkaloids

Preparation of reference solution

The purified compounds were accurately weighed and further dissolved in methanol respectively to yield the stock solutions at the concentration of 5000 ng/mL, the equal volumes of stock solutions were then mixed well to yield the reference solution containing the compounds at the concentration of 1000 ng/mL.

Preparation of sample solution

The total alkaloid extract was accurately weighed and dissolved in methanol to yield the sample solution at the concentration of $1000 \,\mu\text{g/mL}$.

UPLC conditions

UPLC analyses were performed on a Waters Acquity H CLASS system; the compounds were analyzed by an Acquity UPLC BEH C18 column (2.1×50 mm, 1.7μ m, Serial NO. 021132332157 96) using ACN-H₂O (10 % ACN – 100 % ACN in 1.5 mins, linear mode) as eluent.

MS conditions

MS analyses were performed on a Waters Xevo TQD ESI-MS instrument. The compounds were analyzed using the MRM mode. The parameters (Cone voltage and collision energy) were tuned respectively for each compound (Table S1).

	Compound	Parent (m/z)	Daughter (m/z)	Dwell (s)	Cone (V)	Collision (V)
1	Erythrivarine C	843.3856	262.0836	0.063	42	66
2	Erythrivarine D	857.3374	466.0262	0.063	42	36
3	Erythrivarine E	949.7628	311.9421	0.063	60	30
4	Erythrivarine F	964.5174	280.0855	0.063	56	44
5	Erythrivarine G	948.4223	262.0193	0.063	50	50

Table S1: The parameters for MS/MS analysis

Figure S34. The characteristic peak obtained by ESI-MS-MS of erythrivarine C (1)

Figure S35. The characteristic peak obtained by ESI-MS-MS of erythrivarine D (2)

Figure S36 The characteristic peak obtained by ESI-MS-MS of erythrivarine E (3)

Figure S37. The characteristic peak obtained by ESI-MS-MS of erythrivarine F (4)

Sample 1 308 (1.695)	MRM of 5 Channels ES+ 964.521.03e4
8-	
	040.40
	948.42,949.76 m/z

Figure S38. The characteristic peak obtained by ESI-MS-MS of erythrivarine G (5)

