Wide blue phase range observed in simple binary mixture

systems containing rodlike racemic biphenyl mesogens with

2-octyloxy tail

Chiung-Cheng Huang,*^a Chang-Yi Guo,^a Wei-Cheng Hsieh,^a Chih-Yi

Fang,^a Jian-Fu Chiou,^a Mei-Ching Yu,^a Bo-Hao Chen,^b I-Jui Hsu^{*b} and Jey-Jau Lee^c

^aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan E-mail:chchhuang@ttu.edu.tw

^bDepartment of Molecular Science and Engineering, National Taipei University of

Technology, Taipei 106, Taiwan

E-mail: ijuihsu@ntut.edu.tw

Department of Chemical Engineering, Tatung University, Taipei 104, Taiwan.

^cNational Synchrotron Radiation Research Center of Taiwan, Hsinchu 300, Taiwan

Electronic supplementary information (ESI)

Fig. S1 The variable-temperature XRD measurements of biphenyl mesogen C₆OBiPhI-H

Fig. S2 The variable-temperature XRD measurements of biphenyl mesogen C₆OBiPhI-F

Fig. S3 The variable-temperature XRD measurements of biphenyl mesogen C₆OBiPhI-OH

Fig. S4 The variable-temperature XRD measurements of biphenyl mesogen C₆OBiPhI-FF

Fig. S5 FT-IR spectra of the biphenyl compounds C₆OBiPhI-H, C₆OBiPhI-F and C₆OBiPhI-OH.

Fig. S6 The comparison of BP temperature range for the blending mixture system composed of $C_nOBiPhI-H$ and different amount of chiral dopant S811 in heating (red line) and cooling processes (blue line).

Fig. S7 The comparison of BP temperature range for the blending mixture system composed of $C_nOBiPhI$ -F and different amount of chiral dopant S811 in heating (red line) and cooling processes (blue line).

Fig. S8 The comparison of BP temperature range for the blending mixture system composed of $C_nOBiPhI-OH$ and different amount of chiral dopant S811 in heating (red line) and cooling processes (blue line).

Fig. S9 The comparison of BP temperature range for the blending mixture system composed of $C_nOBiPhI$ -FF and different amount of chiral dopant S811 in heating (red line) and cooling processes (blue line).

Fig. S10 DSC curves of **C₇OBiPhI-F** blended with 30.0 wt% **S811** (with rate of 1°C/min upon heating and cooling).

Fig. S11 Optical images of C₇OBiPhI-OH blended with 35.0 wt% S811 were observed by POM at 46.0 $^{\circ}$ C (a) polarizer was rotated clockwise by a small angle of 10°. (b) Polarizer and analyzer were orthogonal. (c) Polarizer was rotated counterclockwise by a small angle of 10°.

Fig. S12 DSC curves of **C**₇**OBiPhI-OH** blended with 35.0 wt% **S811** (with rate of 1°C/min upon heating and cooling).

Fig. S13 The temperature dependence of the Bragg reflection wavelength for the blending mixture consisting of $C_8OBiPhI-F + 30\%$ S811 during the heating process with a rate of 0.2 °C min⁻¹. The inset shows the POM images of BPs at different temperature.

Fig. S14 For the blending mixture consisting of $C_7OBiPhI-OH + 25\%$ **S811** during the cooling process (a) Temperature dependence of typical reflectance profile, and during the heating process(c); (b) Temperature dependence of the Bragg reflection wavelength during the cooling process and, during the heating process (d) with a rate of 0.2 °C min⁻¹.

Fig. S15 (a) Temperature dependence of typical reflectance profile during the cooling process and (c) during the heating process; (b) Temperature dependence of the Bragg reflection wavelength during the cooling process and (d) during the heating process for the blending mixture consisting of $C_6OBiPhI-FF + 25\%$ S811. (with a rate of 0.2 °C min⁻¹)

Fig. S16 The temperature dependence of the Bragg reflection wavelength for the blending mixture consisting of $C_8OBiPhI-F + 10\%$ ISO(6OBA)₂ during the cooling process with a rate of 0.2 °C min⁻¹. The inset shows the POM images of BPs at different temperature.

Fig. S17 The temperature dependence of the Bragg reflection wavelength for the blending mixture consisting of $C_8OBiPhI$ -FF + 10% ISO(6OBA)₂ during the cooling process with a rate of 0.2 °C min⁻¹. The inset shows the POM images of BPs at different temperature.

Fig. S18 The variable-temperature XRD measurements of biphenyl mesogen C₆OBiPhI-FF

(b)

Fig. S19 The HOMO and LUMO of compound (a) $C_6OBiPhI-H$ (b) $C_6OBiPhI-F$ (c) $C_6OBiPhI-OH$ (d) $C_6OBiPhI-FF$ (e) $C_{77}OBiPhI-H$. The simulation exchange functional and basis set are CAM-B3LYP and 6-311G(d, p), respectively. The isosurface is drawn at value of 0.02

Compound	Energy (eV)		_	Dipole moment (m in Debye)			/e)
	НОМО	LUMO	ΔE (eV)	$\mu_{_{_{X}}}$	μ_{y}	$\mu_{_z}$	$\mu_{_{ m total}}$
C ₆ OBiPhI-H	-7.0074	0.0123	7.0196	-1.4837	0.5665	0.3023	1.6166
C ₆ OBiPhI-F	-6.9789	-0.1483	6.8306	-2.3668	1.1911	0.9564	2.8170
C ₆ OBiPhI-OH	-7.1621	-0.0172	7.1449	0.5034	1.2278	1.3010	1.8584
C ₆ OBiPhI-FF	-7.0240	-0.2903	6.7337	-1.7324	2.2723	1.6355	3.2923
C77OBiPhI-H	-7.0492	0.0023	7.0515	-1.5766	0.4402	0.2524	1.6562

Table S1. DFT calculated HOMO, LUMO, energy gap, dipole moment components, μ_x , μ_y , μ_z and modulus (μ) for the biphenyl compounds.