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12 1. Derivation of methane combustion rates on oxide Pd-like and Pt-like surfaces

13 1.1 Derivation of CH4 reaction rates are limited by C-H bond activation on Pd-O 

14 site pairs for Pd-like surfaces. Suppose all but step 2a and step 4a are quasi-

15 equilibrated, and the overall rate for methane oxidation rate can be written as 

16 follows:

17                    (1a)4.1 4[ ][ ]a ar k CH O

18 or

19                    (2a)2 2[ ][*]a ar k O

20 From the expressions for the equilibrium constant it is possible to get the coverage 

21 density of the main intermediates which can be expressed by [*] 

22                    (3a)
22 1[ ]= [*]a OO K P
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24 [O] is given by eq1, eq2 and eq3
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28 When the concentration of CO2 is high enough, the surfaces are covered by 

29 CO3*
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32 In addition, CO* and C* are given by 
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36 H2O* are described by a equation 

37
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40 The quasi-equilibrium between OH* and H2O* can be expressed by
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42 Then, OH* can be written as follow
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45 The relationship of all species can be given by 
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47 It also can be written as follow
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49 Taken together with all the equations (eq 1a to eq 12a), eq 14a can be 

50 written as
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53    (15a)

54 In this paper, the surface species of C*, CO were not taken into consideration 

55 owing to the high O2 concentration. Hence, the rate equation can be simplified as 

56 follows:
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59

60 1.2 Derivation of CH4 reaction rates are limited by C-H bond activation on O*-

61 O* site pairs on Pt-like surfaces. Suppose all but step 2b (reversible) and step 3b 

62 (irreversible) are quasi-equilibrated, and the overall rate for methane oxidation 

63 rate can be written as follows:
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65 Besides, from the expression for the equilibrium constants it is possible to get the 

66 coverage density of the main intermediates which can be expressed by [*] 

67

68                                 (2b)
22 1[ ] [*]b OO K P

69 Equation 1b can be simplified to
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71 Some other species can be given by
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77 The relationship of all species can be given by the Langmuir adsorption 

78 equation, 

79
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81 Here, the intermediates CH4* were not taken into consideration due to the 

82 rare vacancy sites (*) for methane adsorption. Besides, equation (9b) also can be 

83 written as follow
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86 Taken together with all the equations (eq 2b to eq 8b), eq 10b can be written 

87 as
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91 Hence, the overall rate for methane oxidation on Pt-like catalysts can be given by:
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94 (12b)

95 2. Optimized structure of the oxide (101) layers on (100) metallic 

96 substrates. 

97

98 Figure S1. Side- and top-views of the optimized structure of oxide (101) layers on (100) sublayer. 

99 (a) PdO(101)/Pd/Pt(100), (b) PdO(101)/PdPt(100), (c) 2 layers PdO(101)/Pt(100), (d) Pd0.75Pt0.25 

100 on αO(101)/Pt(100), (e) Pd0.75Pt0.25 on βO(101)/Pt(100). In the case of Pd0.75Pt0.25 on αO(101)/Pt(100), 

101 one surface Pd atom cordinated to four O atoms (α site) is repalced by one Pt atom. For Pd0.75Pt0.25 



102 on βO(101)/Pt(100), one surface Pd atom cordinated to three O atoms (α site) is replaced by one Pt 

103 atom. 


