Supporting information

Synthesis of novel 1,5-disubstituted pyrrolo[1,2-a]quinazolines and their

evaluation for anti-bacterial and anti-oxidant activities

Shaghayegh Sadat Kazemi,^a Ali Keivanloo,*^a Hossein Nasr-Isfahani,^a Abdolhamid Bamoniri^b

^a School of Chemistry, Shahrood University of Technology, Shahrood, Iran.

^b Chemistry Faculty, University of Kashan, Kashan, Iran.

Table of contents

- General considerations
- Typical experimental procedure for synthesis of quinazoline-2,4-dione
- Typical experimental procedure for synthesis of 2,4-dichloroquinazoline
- Typical experimental procedure for synthesis of 2-chloro-4-aminoquinazoline
- Typical experimental procedure for synthesis of 2-chloro-4-alkoxyquinazoline
- Typical experimental procedure for synthesis of 1,5- disubstituted pyrrolo[1,2-a] quinazoline
- ¹H NMR and ¹³C NMR spectra for new compounds

General considerations

Palladium(II) chloride and propargyl alcohol were purchased from Sigma Aldrich Chemical Company. Triphenylphosphine, Anthranilic acid, Urea, *N*,*N*-dimethylaniline, triethylamine, secondary amines, thin-layer chromatography (TLC) plates, silica gel (particle size, 100-200

mesh), and all the solvents used for the reactions were purchased from Merck. NMR spectra were recorded on Bruker 400 MHz ¹H NMR, 300 MHz ¹H NMR, and 100 MHz ¹³C NMR, 75 MHz ¹³C NMR spectrometers. ¹H NMR signals were reported relative to Me₄Si (δ 0.0) or residual CHCl₃ (δ 7.26). ¹³C NMR signals were reported relative to CDCl₃ (δ 77.16). Multiplicities were described using the following abbreviations: s = singlet, d = doublet, t = triplet and m = multiplet.IR spectra were measured on a Shimadzu IR-435 grating spectrophotometer. Mass spectra were recorded on a 5975C spectrometer manufactured in Agilent Technologies Company.

Typical procedure for preparation of quinazoline-2,4-dione

A mixture of anthranilic acid (50 g, 0.36 mol) and urea (109 g, 1.82 mol) in a 1L round bottom flask equipped with a mechanical stirrer was heated without solvent at 135-140 °C using an air condenser for 3h. The melted reaction mixture was poured into crushed ice (500 ml) with continuous stirring for 30 min. The solid so formed was filtered through Buchner funnel, washed with water (3×100 mL) and dried under vacuum over P_2O_5 . The product was pure enough to use as such for next step. Yield 74%; mp >250°C.¹

Typical procedure for preparation of 2,4-dichloroquinazoline

A mixture of quinazoline-2,4-diones (20 g, 0.12 mol), obtained above and POCl₃ (98 g, 0.64 mol) was refluxed in presence of N,N-dimethylaniline (8.5 g, 0.07 mol) for 5h. Reaction mixture was allowed to cool to room temperature and poured cautiously into crushed ice (500 ml) with continuous stirring for 30 min. The solid obtained was filtered through Buchner funnel, washed

with chilled alcohol (2×100 mL) and purified by column chromatography using 10% ethyl acetate/hexane as eluent. Yield 73%; mp 115- 116 °C [lit. 116-117 °C].¹

Typical procedure for preparation of 2-chloro-4-aminoquinazoline

A mixture of 2,4-dichloroquinazoline (1 mmol, 0.194 g), secondary amines (2 mmol) in acetonitrile was refluxed for 5 hrs. until complete consumption of the starting materials monitored by TLC. After evaporation of the solvent, the resulting precipitate was washed with H_2O and did not require any further purification.²

Typical procedure for preparation of 2-chloro-4-alkoxyquinazoline

A mixture of sodium (1 mmol, 0.023 g) and alcohol (3 ml) was stirred 15 min at room temperature, Then, 2,4-dichloroquinazoline (1 mmol, 0.194 g) was added into the mixture until complete consumption of the starting materials monitored by TLC. After evaporation of the solvent, the resulting precipitate was washed with H_2O and did not require any further purification.³

Typical experimental procedure for synthesis of 1,5- disubstituted pyrrolo[1,2-a] quinazoline

A mixture of 4-substituted-2-chloroquinoxaline 2 (1 mmol), a secondary amine (3 mmol), Pd(Ph₃P)₂Cl₂ (0.05 mmol, 0.03 g), CuI (0.1 mmol, 0.03 g), Et₃N (4 mmol, 0.4 g) was stirred in CH₃CN (5 mL) at room temperature under argon atmosphere. Propargyl alcohol (1.2 mmol, 0.07 g) was added, and the resulting mixture was stirred at 80 °C for 15 h. After completion of the reaction, the mixture was filtered, and the remaining solid was washed with H₂O, and dried. The crude product was purified by column chromatography (silica-gel 100) using CHCl₃–CH₃OH (99:1) as eluent.

5-methoxy-1-(morpholin-4-yl)pyrrolo[1,2-*a*]quinazoline (4a)

Dark Yellow solid; MP, 145-147 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.45-2.59 (m, 2H, NCH₂), 3.25-3.39 (m, 2H, NCH₂), 3.84-4.05 (m, 7H, 2OCH₂, OCH₃), 6.24 (d, *J* = 3.9 Hz, 1H, CH of pyrrole), 6.64 (d, *J* = 3.9 Hz, 1H, CH of pyrrole), 7.15-7.38 (m, 2H, Ar-H), 7.65-7.73 (m, 1H, Ar-H), 8.96 (d, *J* = 8.0 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 52.45, 66.35, 67.27, 100.21, 104.34, 115.27, 122.63, 125.60, 125.88, 127.81, 134.87, 152.54, 163.65, 175.36; IR (KBr): 2940, 2830, 1610, 1500, 1120 cm⁻¹; m/z [M]⁺ 283; HRMS for C₁₆H₁₇N₃O₂ calculated [MH] 283.1321; found m/z=283.1323.

5-methoxy-1-(piperidin-1-yl)pyrrolo[1,2-a]quinazoline (4b)

Orange solid; MP, 139-141 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.51-1.91 (m, 6H, 3CH₂), 2.51-2.58 (m, 2H, NCH₂), 3.21-3.43 (m, 2H, NCH₂), 4.02 (s, 3H, OCH₃), 6.21 (d, *J* = 3.9 Hz, 1H, CH of pyrrole), 6.63 (d, *J* = 4.1 Hz, 1H, CH of pyrrole), 7.04-7.21 (m, 1H, Ar-H), 7.31-7.47 (m, 1H, Ar-H), 7.56-7.64 (m, 1H, Ar-H), 8.93 (d, *J* = 8.0 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 24.71, 25.15, 52.77, 67.12, 99.39, 104.53, 115.14, 121.86, 125.10, 125.48, 127.41, 135.40, 152.54, 163.75, 175.32; IR (KBr): 2944, 2830, 1620, 1505, 1125 cm⁻¹; m/z [M]⁺ 281; HRMS for C₁₇H₁₉N₃O calculated [MH] 281.1528; found m/z=281.1532.

5-ethoxy-1-(piperidin-1-yl)pyrrolo[1,2-a]quinazoline (4c)

Orange solid; MP, 139-141 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.33 (t, *J* = 7.2 Hz, 3H, CH₃), 1.60-1.80 (m, 6H, 3CH₂), 2.47-2.54 (m, 2H, NCH₂), 3.18-3.22 (m, 2H, NCH₂), 4.44 (q, *J* = 7.1 Hz, 2H, OCH₂), 6.17 (d, J = 4.2 Hz, 1H, CH of pyrrole), 6.58 (d, J = 4.2 Hz, 1H, CH of pyrrple), 7.10-7.19 (m, 1H, Ar-H), 7.21-7.32 (m, 1H, Ar-H), 7.53-7.61 (m, 1H, Ar-H), 8.91 (d, J = 9.0 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 14.43, 24.87, 25.94, 53.85, 62.36, 100.39, 105.63, 116.21, 122.86, 126.11, 126.76, 127.75, 136.50, 154.22, 162.51, 176.62; IR (KBr): 2950, 2850, 1615, 1510, 1120 cm⁻¹; m/z [M]⁺ 295; HRMS for C₁₈H₂₁N₃O calculated [MH] 295.1685; found m/z=295.1686.

1-(morpholin-4-yl)-5-propoxypyrrolo[1,2-*a*]quinazoline (4d)

Orange solid; MP, 127-129 °C; ¹H NMR (300 MHz, CDCl₃): δ 0.81 (t, J = 7.3 Hz, 3H, CH₃), 1.58-1.77 (m, 2H, CH₂), 2.44-2.58 (m, 2H, NCH₂), 3.29-3.32 (m, 2H, NCH₂), 3.74-3.92 (m, 4H, 2OCH₂), 4.24 (t, J = 6.6 Hz, 2H, OCH₂), 6.18 (d, J = 4.2 Hz, 1H, CH of pyrrole), 6.59 (d, J = 4.2Hz, 1H, CH of pyrrole); 7.23-7.47 (m, 2H, Ar-H), 7.53-7.65 (m, 1H, Ar-H), 8.93 (d, J = 8.1 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 10.90, 14.76, 52.03, 66.19, 68.26, 100.36, 104.22, 117.89, 121.00, 126.12, 126.42, 128.90, 136.76, 154.19, 163.37, 175.42; IR (KBr): 2950, 2840, 1620, 1500, 1110 cm⁻¹; m/z [M]⁺ 311; HRMS for C₁₈H₂₁N₃O₂ calculated [MH] 311.1634; found m/z=311.1629.

1-(piperidin-1-yl)-5-propoxypyrrolo[1,2-a]quinazoline (4e)

Brown solid; MP, 125-126 °C; ¹H NMR (300 MHz, CDCl₃): δ 0.82 (t, *J* = 7.3 Hz, 3H, CH₃), 1.18-1.37 (m, 2H, CH₂), 1.57-1.71 (m, 6H, 3CH₂), 2.51-2.59 (m, 2H, NCH₂), 3.22-3.25 (m, 2H, NCH₂), 4.14 (t, *J* = 6.6 Hz, 2H, OCH₂), 6.21 (d, *J* = 4.2 Hz, 1H, CH of pyrrole), 6.63 (d, *J* = 4.2 Hz, 1H, CH of pyrrole), 7.15-7.18 (m, 1H, Ar-H), 7.43-7.47 (m, 1H, Ar-H), 7.55-7.63 (m, 1H, Ar-H), 8.93 (d, *J* = 8.4 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 10.98, 14.08, 23.76, 25.77, 53.83, 68.16, 100.40, 104.38, 116.19, 122.87, 126.61, 127.68, 128.81, 135.46, 154.11, 165.78, 175.28; IR (KBr): 2955, 2840, 1615, 1515, 1110 cm⁻¹; m/z [M]⁺ 309; HRMS for C₁₉H₂₃N₃O calculated [MH] 309.1841; found m/z=309.1846.

5-butoxy-1-(piperidin-1-yl)pyrrolo[1,2-a]quinazoline (4f)

Orange solid; MP, 117-119 °C; ¹H NMR (300 MHz, CDCl₃): δ 0.85 (t, J = 7.4 Hz, 3H, CH₃), 1.17-1.47 (m, 4H, 2CH₂), 1.65-1.79 (m, 6H, 3CH₂), 2.51-2.58 (m, 2H, NCH₂), 3.21-3.25 (m, 2H, NCH₂), 4.14 (t, J = 6.6 Hz, 2H, OCH₂), 6.21 (d, J = 4.2 Hz, 1H, CH of pyrrole), 6.62 (d, J = 4.0Hz, 1H, CH of pyrrole), 7.12-7.18 (m, 1H, Ar-H), 7.44-7.56 (m, 2H, Ar-H), .8.93 (d, J = 7.8 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 10.96, 13.94, 19.34, 24.06, 26.20, 57.34, 68.04, 100.38, 105.69, 116.20, 122.85, 126.66, 127.71, 128.82, 135.05, 154.18, 168.20, 175.18; IR (KBr): 2950, 2850, 1615, 1525, 1110 cm⁻¹; m/z [M]⁺ 323; HRMS for C₂₀H₂₅N₃O calculated [MH] 323.1998; found m/z=323.1995.

5-butoxy-1-(morpholin-4-yl)pyrrolo[1,2-*a*]quinazoline (4g)

Orange solid; MP, 121-123 °C; ¹H NMR (300 MHz, CDCl₃): δ 0.82 (t, J = 7.4 Hz, 3H, CH₃), 1.15-1.37 (m, 2H, CH₂), 1.57-1.72 (m, 2H, CH₂), 2.51-2.56 (m, 2H, NCH₂), 3.22-3.57 (m, 2H, NCH₂),), 4.14 (t, J = 6.6 Hz, 2H, OCH₂), 6.21 (d, J = 4.2 Hz, 1H, CH of pyrrole), 6.64 (d, J = 4.2 Hz, 1H, CH of pyrrole), 7.17-7.21 (m, 1H, Ar-H), 7.43-7.47 (m, 1H, Ar-H), 7.55-7.64 (m, 1H, Ar-H), 8.93 (d, J = 8.1 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 10.98, 14.08, 19.38, 57.56, 66.75, 68.17, 101.84, 104.14, 116.31, 121.44, 126.43, 126.72, 128.82, 136.36, 155.01, 167.80, 175.83; IR (KBr): 2955, 2850, 1610, 1520, 1115 cm⁻¹; m/z [M]⁺ 325; HRMS for C₁₉H₂₃N₃O₂ calculated [MH] 325.1790; found m/z=325.1794.

1,5-di(morpholin-4-yl)pyrrolo[1,2-*a*]quinazoline (4h):

Yellow solid; MP, 149-151 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.45-2.60 (m, 2H, NCH₂), 3.16-3.18 (m, 2H, NCH₂), 3.33-3.56 (m, 4H, 2NCH₂), 3.68-4.10 (m, 8H, 4OCH₂,), 6.38 (d, *J* = 4.0 Hz, 1H, CH of pyrrole), 6.83 (d, *J* = 4.0 Hz, 1H, CH of pyrrole), 7.25-7.27 (m, 1H, Ar-H), 7.48-7.50 (m, 1H, Ar-H), 7.65-7.67 (m, 1H, Ar-H), 8.90 (d, *J* = 9.0 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 52.12, 54.38, 66.25, 64.37, 100.26, 105.31, 115.23, 122.51, 125.37, 126.11, 127.48, 136.05, 152.89, 162.28, 171.23; IR (KBr): 2950, 2850, 1610, 1520, 1115 cm⁻¹; m/z [M]⁺ 338; HRMS for C₁₉H₂₂N₄O₂ calculated [MH] 338.1743; found m/z=338.1745.

1-(morpholin-4-yl)-5-(piperidin-1-yl)pyrrolo[1,2-a]quinazoline (4i)

Yellow solid; MP, 145-147 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.61-1.85 (m, 6H, 3CH₂), 2.34-2.49 (m, 2H, NCH₂), 3.10-3.21 (m, 2H, NCH₂), 3.61-3.72 (m, 4H, 2NCH₂), 3.96-4.09 (m, 4H, 2OCH₂), 6.38 (d, *J* = 4.2 Hz, 1H, CH of pyrrole), 6.75 (d, *J* = 4.2 Hz, 1H, CH of pyrrole), 7.19-7.42 (m, 2H, Ar-H), 7.64-7.69 (m, 1H, Ar-H), 8.86 (d, *J* = 8.0 Hz, 1H, 9-H); ¹³C NMR (75 MHz, CDCl₃): δ 24.84, 25.94, 51.20, 53.37, 66.42, 100.39, 104.83, 115.42, 122.74, 125.53, 126.12, 135.84, 153.07, 161.27, 171.13; IR (KBr): 2950, 2850, 1600, 1510, 1100 cm⁻¹; m/z [M]⁺ 336; HRMS for C₂₀H₂₄N₄O calculated [MH] 336.1950; found m/z=336.1951.

Anti-bacterial assay

The anti-bacterial activities of pyrrolo[1,2-a]quinazolines were evaluated biologically using a well-diffusion method. First the nutrient agar and nutrient broth cultures were prepared according to the manufacturer's instructions, and they were then incubated at 37 °C. After

incubation for the appropriate time period, a suspension of 30 μ L of each bacterium was added to the nutrient agar plates. Cups (5 mm in diameter) were cut in the agar using a sterilized glass tube. Each well received 30 μ L of the test compounds at a concentration of 1000 μ g/ml in DMSO. Then the plates were incubated at 37 °C for 24 h, after which time, the inhibition zone was measured. The values were expressed in millimeters (mm). The anti-bacterial activity of each pyrrolo[1,2-a]quinazoline was compared with that for PenicillinGand as the standard. DMSO was used as the negative control.

DPPH radical scavenging assay

The DPPH radical scavenging activities of **4a**, **4d**, **4e**, **4f**, and **4h** were evaluated according to the literature.²³ The DPPH solution was prepared by dissolving an appropriate amount of DPPH in MeOH to give a concentration of 6.25×10^{-5} M. Compounds **4a**, **4d**, **4e**, **4f**, **4h**, and DPPH with different concentrations (4000, 2000, 1000, 500, 250, and 125 µg/mL) in MeOH were prepared. Then 0.1 mL of each pyrrolo[1,2-a]quinazoline solution was added to 3.9 mL of the DPPH solution, and was shaken vigorously. The samples were kept in dark for 30 min, and then their absorbance was measured at 517 nm. MeOH was used as the blank. The radical scavenging activity was calculated as follows:

Radical scavenging activity (%) = $\left(\frac{A_{Control} - A_{Sample}}{A_{Control}}\right) * 100\%$

where $A_{control}$ is the absorbance of the negative control (containing all reagents except the test compounds) and A_{sample} is the absorbance of the test compounds. IC₅₀ values of the test compounds were determined by plotting the radical scavenging activity percentage against the concentration of the test compound.

Figure 1. 300 MHz ¹H NMR spectrum of compound 4a in CDCl₃

Figure 2. 75 MHz ¹³C NMR spectrum of compound 4a in CDCl₃

Figure 3. 300 MHz ¹H NMR spectrum of compound 4b in CDCl₃

Figure 4. 75 MHz ¹³C NMR spectrum of compound 4b in CDCl₃

Figure 5. 300 MHz ¹H NMR spectrum of compound 4c in CDCl₃

Figure 6. 75 MHz ¹³C NMR spectrum of compound 4c in CDCl₃

Figure 7. 300 MHz ¹H NMR spectrum of compound 4d in CDCl₃

Figure 8. 75 MHz ¹³C NMR spectrum of compound 4d in CDCl₃

Figure 9. 300 MHz ¹H NMR spectrum of compound 4e in CDCl₃

1 2 2 2 2 2 2

Figure 10. 75 MHz ¹³C NMR spectrum of compound 4e in CDCl₃

Figure 11. 300 MHz ¹H NMR spectrum of compound 4f in CDCl₃

Figure 12. 75 MHz ¹³C NMR spectrum of compound 4f in CDCl₃

Figure 13. 300 MHz ¹H NMR spectrum of compound 4g in CDCl₃

Figure 14. 75 MHz ¹³C NMR spectrum of compound 4g in CDCl₃

Figure 15. 300 MHz ¹H NMR spectrum of compound 4h in CDCl₃

Figure 16. 75 MHz ¹³C NMR spectrum of compound 4h in CDCl₃

Figure 17. 300 MHz ¹H NMR spectrum of compound 4i in CDCl₃

Figure 18. 75 MHz ¹³C NMR spectrum of compound 4i in CDCl₃

References

[1]. Desai, PS.; Naik, PJ.; Discovery, 2014, 17, 7.

[2]. Sagiv-Barfi, I.; Weiss, E.; Levitzki, A.; *Bioorganic & Medicinal Chemistry*, **2010**, 18, 6404.

[3]. Wang, H.; Wei, Ch.; Deng, X.; Li, F.; Quan, Zh.; Arch. Pharm. Chem. Life Sci. 2009, 342, 671.