Electronic Supplementary Information

Enhanced Thermoelectric Performance in Percolated Bismuth Sulfide Composite

Deniz P. Wong^{a‡}, Wei-Lun Chien^{a,c‡}, Chien-Yu Huang^{a,b}, Cheng-en Chang^{a,c}, Abhijit Ganguly^b,

Lian-Ming Lyu^a, Jih-Shang Hwang^c, Li-Chyong Chen^{b*} and Kuei-Hsien Chen^{c*}

^aInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan

^bCenter for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan

^cInstitute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan

[‡] contributed equally

E-mail:

Contents:

- 1. Additional SEM images
- 2. Electrical properties

Figure S1. Scanning electron micrographs of (a) commercial Bi_2S_3 and (b) Bismuth-rich Bi_2S_3 from the hydrothermal method.

Figure S2. Electrical conductivity of Bi_2S_3 composites at 523 K based on various weight ratio of the Bismuth-rich Bi_2S_3 material.

Figure S3. Comparison of electrical conductivity of Bi₂S₃ composites and directly-sintered Bi₂S₃ sample.