Supporting Information

Enhanced gas-sensing performance of SnO₂/Nb₂O₅ hybrid

nanowires

Qi Sun,¹ Kaidi Diao,² Tulai Sun,³ Maozhong Li,⁴ Xudong Cui,^{2*} He Tian,³ Bin Xiang,^{1*}

¹Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. ²Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Sichuan, 621900, China.

³Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China . ⁴Yunnan KIRO-CH Photonics Co., Ltd, No. 5 Hongwai road, Economic and Technological Development Zone, Kunming, China.

*Corresponding author: <u>binxiang@ustc.edu.cn</u>; <u>xudcui@163.com</u>

Figure S1 The HRTEM image of SnO₂/Nb₂O₅.

Figure S2 Schematic diagram on sensing mechanism of SnO₂/Nb₂O₅. Vo represents oxygen vacancies.

Figure S3 The stability of SnO_2/Nb_2O_5 sensor

Figure S4 The selectivity of SnO_2 and SnO_2/Nb_2O_5 sensor

Figure S5 The SEM imgae of SnO_2/Nb_2O_5 after after sensing measurements

Figure S6 The high resolution XPS spectra showing the binding energy of (a) O 1s and (b) Sn 3d

	State	Conditions	Response time	Recovery time
SnO ₂ ^{S1}	Thin films,	350℃, 0.1ppm	Several	Several
			minutes	minutes
$In_2O_3^{S2}$	Thick film	300℃, 0.1ppm	~1min	~10min
SnO ₂ /Nb ₂ O ₅	The sample, nanowire	250°C,	~10min	~7.5min
		0.5ppm		

Table S1 the response and recovery time of my sample and literature.

References

[S1] M. Epifania, E. Comini, J. Arbiol, R. Díaz, N, Sergent, T. Pagnier, P. Siciliano, G. Fagli, J. R. Morante, *Sensors and Actuators B: Chemical*, 2008, 130, 483–487.
[S2] L. Berry, J. Brunet, *Sensors and Actuators, B: Chemical*, 2008, 129, 450–458.