Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary information

Synthesis, characterization and application of Cyclam-modified magnetic SBA-15 as a novel sorbent and its optimization by central composite design for adsorption and determination of trace amount of lead ions

Rouholah Zare-Dorabei ^{1,*}, Maryam Shamsedini Darbandsari ^{1, 2}, Ali Moghimi ², Samaneh Nazerdeylami¹, Mahnaz Saghanejhad Tehrani ¹

¹Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran

²Department of Chemistry, Varamin (Pishva) Branch, Islamic Azad University, Varamin, Iran * Corresponding author. E-mail address: <u>Zaredorabei@iust.ac.ir</u>

Supplementary information caption

 Table S1. Matrix for the central composite design (CCD)

Table S2. The interfering effect of other ions on the extraction recovery of lead. Conditions: sample volume, 100.0 mL; lead concentration, 30 μg/L; amount of sorbent, 4.0 mg; volume of desorbing solution, 3.0 mL

Fig. S1. Cyclam structure

- Fig. S2. X-ray diffraction patterns (a); FT-IR (b); SEM images(c) of Fe₃O₄ magnetic nanoparticles.
- Fig. S3. FT-IR spectrum of the synthesized materials (a,b,c, d)
- Fig. S4. Sorption/desorption N₂ analysis of SBA-15.
- Fig. S5. Effect of volume of the sample solution on the extraction recovery of lead ions (Conditions: amount of sorbent, 0.004g; lead concentration, 30 µg/L; volume of the eluent,3 mL; desorption time,40min, pH, 4.8).
- **Fig. S6.** The equilibrium isotherms (a) Langmuir (b) Freundlich (c) Temkin, for adsorption of Pb(II) ions onto Fe₃O₄@ Cyclam-SBA-15 at optimum conditions in some ion concentrations ranging.
- **Fig. S7.** The adsorption kinetic curves related to (a) pseudo-first order (b) pseudo-second order and (c) Elovich models for adsorption of Pb(II) ions over Fe₃O₄@ Cyclam-SBA-15 at optimum conditions at various contact time.
- **Fig. S8.** Regeneration study after five consecutive adsorption/desorption cycles with HCl (0.01M), EDTA (0.01M) and HNO₃ (0.01M) eluent

Run	Block	А	В	С	D	Q ¹ (mg/g)
1	1	6	15	4	30	85.75
2	1	4	20	5	40	206.87
3	1	8	10	3	20	54.07
4	1	8	20	3	40	109.96
5	1	4	10	3	40	132.30
6	1	4	20	3	20	168.50
7	1	6	15	4	30	75.07
8	1	8	20	5	20	117.00
9	1	4	10	5	20	79.60
10	1	8	10	5	40	57.50
11	2	8	10	5	20	54.05
12	2	4	20	5	20	197.00
13	2	4	10	3	20	87.50
14	2	4	20	3	40	190.50
15	2	6	15	4	30	82.04
16	2	6	15	4	30	81.42
17	2	8	20	5	40	118.56
18	2	8	10	3	40	69.50
19	2	8	20	3	20	86.60
20	2	4	10	5	40	94.60
21	3	6	15	6	30	69.50
22	3	6	5	4	30	41.67
23	3	6	15	2	30	67.50
24	3	6	15	4	50	121.94
25	3	2	15	4	30	209.42
26	3	6	25	4	30	179.59
27	3	6	15	4	10	87.22
28	3	6	15	4	30	83.36
29	3	10	15	4	30	75.44
30	3	6	15	4	30	79.98

 Table S1. Matrix for the central composite design (CCD)

1- Adsorption capacity

Ions	Ion concentration (µg/L)	Recovery (%)	Interference percentage %
Na ⁺	3000	99.404	0.596
	6000	97.29	2.71
Fe ²⁺	3000	97.49	2.51
	6000	96.00	4.00
Hg^{2+}	3000	36.76	3.24
	6000	98.02	1.98
NO ₃ -	3000	95.81	4.19
	6000	95.02	3.98
Cl-	3000	99.404	0.596
	6000	97.29	2.71
CO ₃ ²⁻	3000	99.11	0.89
	6000	95.49	4.51
SO ₄ ²⁻	3000	98.79	1.21
	6000	95.46	4.54

Table S2. The interfering effect of other ions on the extraction recovery of lead. Conditions: sample volume, 100.0 mL; lead concentration, $30 \mu g/L$; amount of sorbent, 4.0 mg; volume of desorbing solution, 3.0 mL

Fig. S1. Cyclam structure

Fig. S2. X-ray diffraction patterns (a); FT-IR (b); SEM images(c) of Fe₃O₄ magnetic nanoparticles.

Fig. S3. FT-IR spectrum of the synthesized materials (a,b,c, d)

Fig. S4. Sorption/desorption N_2 analysis of SBA-15.

Fig. S5. Effect of volume of the sample solution on the extraction recovery of lead ions (Conditions: amount of sorbent, 0.004g; lead concentration, 30 μg/L; volume of the eluent,3 mL; desorption time,40min, pH, 4.8).

Fig. S6. The equilibrium isotherms (a) Langmuir (b) Freundlich (c) Temkin, for adsorption of Pb(II) ions onto Fe₃O₄@ Cyclam-SBA-15 at optimum conditions in some ion concentrations ranging.

Fig S7. The adsorption kinetic curves related to (a) pseudo-first order (b) pseudo-second order and (c) Elovich models for adsorption of Pb(II) ions over Fe₃O₄@ Cyclam-SBA-15 at optimum conditions at various contact time.

Fig. S8. Regeneration study after five consecutive adsorption/desorption cycles with HCl (0.01M), EDTA (0.01M) and HNO₃ (0.01M) eluent