Electronic Supplementary Information

In situ synthesis of Molybdenum oxide @ N-doped Carbon from biomass for selective vapor phase hydrodeoxygenation of Lignin-derived phenols under atmosphere H₂

Lujiang Xu, Zheng Han, Ying Zhang,* Yao Fu*

*i*CheM, CAS key labtoratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China. Hefei, Anhui, China.

Correspondence to: Dr. Y. Zhang, E-mail: <u>zhzhying@ustc.edu.cn</u>; Dr. Y. Fu E-mail: <u>fuyao@ustc.edu.cn</u>.

Method for analyzing products and processing data

The liquid products were analyzed by GC-MS (Thermo Trace GC Ultra with an ISQ i mass spectrometer) equipped with a TR-35MS capillary column (30 m \times 0.25 mm \times 0.25 mm). Split injection was performed at a split ratio of 50 using helium (99.999%) as carrier gas. The GC heating ramp was: 1) hold at 40 °C for 3 min, 2) heat to 180 °C at 5 °C /min, 3) heat to 280 °C at 10 °C /min, and 4) hold at 280 °C for 5 min.

The total amount of liquid products was determined by the weight difference of the condensation tube before and after the experiment. The coke at the end of the run was measured after the reaction by weighing the solids and subtracting the weight of the catalyst.

The major liquid products were quantitatively determined by gas chromatography (GC 1690, Kexiao, China) employing a 30 m \times 0.25 mm \times 0.25 µm fused-silica capillary column (HP-Innowax, Agilent). The liquid sample was mixed with bi-cyclohexane as the internal standard and diluted by ethanol. The GC operating conditions were as follows: carrier gas: nitrogen; injection port: 250 °C in a split mode; detector (FID): 250 °C; column temperature: 40 °C; oven temperature program: heating up to 250 °C at a rate of 10 °C/min, and holding at a final temperature for 5.0 min.

The gas products were collected in gas bags. The gas bags were weighed before and after reaction and their contents were analyzed using gas chromatography (GC-SP6890, Shandong Lu-nan Ruihong Chemical Instrument Co., Ltd., Tengzhou, China) with two detectors, a TCD for analysis of H_2 , CO, CH₄, and CO₂ separated on TDX-01 column, and a FID (flame ionization detector) for gas hydrocarbons separated on Porapak Q column. The moles of gas products were determined by the normalization method with standard gas.

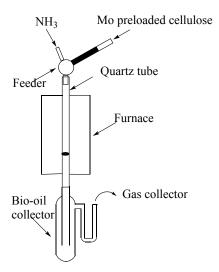


Figure S1.Pyrolysis reactor for preparing MoOx@NC catalysts.

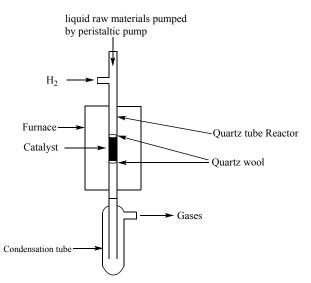


Figure S2. Bench-top reactor for vapor phase HDO of lignin-derived phenols.

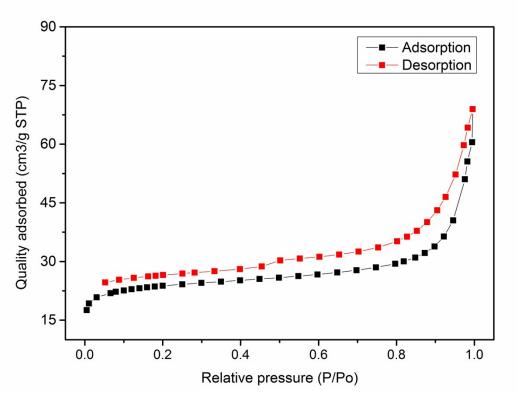


Figure S3. N2 adsorption-desorption isotherms of MoOx@NC-600 catalyst.

Catalvat	DET aurfage area m ² /a	Composition (wt %)					
Catalyst	BET surface area m ² /g	C ^a	H ^a	N ^a	Mo ^b		
C-600	43.1	78.2	3.1	-	-		
NC-600	110.2	79.5	2.7	6.9	-		
MoOx@C-600	26.9	55.5	3.2	0.7	25.6		
MoOx@NC-500	20.7	51.3	2.6	7.8	23.5		
MoOx@NC-550	46.0	53.8	2.3	6.4	26.1		
MoOx@NC-600	81.0	51.0	1.8	6.9	28.7		
MoOx@NC-650	75.2	43.2	1.6	7.5	37.4		

Table S1. Physicochemical properties of catalysts

Catalysts	С	Ο	Ν	Mo
C-600	83.2	16.8	-	-
NC-600	87.0	5.1	7.9	-
MoOx@C-600	80.9	15.0	0.9	3.2
MoOx@NC-500	83.5	7.9	7.3	1.4
MoOx@NC-550	83.8	6.8	8.2	1.2
MoOx@NC-600	85.7	6.5	6.1	1.7
MoOx@NC-650	87.3	5.6	5.6	1.5
Analyzed by XPS.				

Table S2.Elemental content analyzed by XPS

Entry	1	2	3	4	5	6					
Reaction temperature (°C)	300	350	400	450	500	600					
Guaiacol conversion (%)	80.7	96.0	100	100	100	100					
Gases	4.2	7.2	9.3	13.4	15.1	16.2					
Coke	19.5	14.4	10.3	6.9	6.3	4.8					
Aromatic hydrocarbons	2.1	6.1	68.8	70.2	57.4	50.7					
Phenolic products	45.6	63.9	6.7	1.8	9.6	14.8					
Aromatic hydrocarbons											
Benzene	2.1	4.6	46.1	51.8	34.7	33.9					
Tolunene	0	1.5	19.8	15.0	18.2	13.8					
Other alkylbenzenes	0	0	2.9	3.4	4.5	3.0					
		Phenolic p	oroducts								
Phenol	30.6	50.9	3.3	0.7	2.9	5.4					
anisole	5.5	8.3	1.7	0.6	2.1	1.8					
cresol	9.2	4.7	1.4	0.5	3.4	5.8					
other alkylphenols	0.3	0	0.3	0	1.2	1.8					
The catalytic test condition: th	ne guaiacol/	mesitylene=1	:1, catalyst is	MoOx@NC-	600, catalyst ι	usage is 1g					
WHSV of the mixture is 1 h ⁻¹	, H ₂ flow rat	e is 70 ml/mi	n; c: The yield	d in this study	is carbon yiel	ld.					

Table S3. The effect of HDO reaction temperature.

Table S4. Catalyst s	stability test										
Entry	1	2	3	4	5	6	7	8	9	10	11
Time on stream (h)	0.5	1	1.5	2	2.5	5	7.5	10	12.5	15	20
Conversion (%)	100	100	100	100	100	100	100	100	100	100	100
Aromatics	83.3	81.8	81.6	81.6	82.0	83.9	82.7	71.0	67.6	60.4	42.7
Phenols	0	3.1	5.2	6	5.6	5.4	6.1	8.8	15.3	19	25.8
				Aromat	ics						
Benzene	65.7	61.9	64.6	63.0	58.8	66.2	64.3	56.1	53.8	48.1	35.8
Tolunene	15.5	17.6	14.8	16.8	21.9	15.3	16.7	13.0	12.3	10.5	5.6
Other alkylbenzenes	2.1	2.3	2.2	1.8	1.3	2.4	1.7	1.9	1.5	1.8	1.3
				Pheno	ls						
Phenol	0	0	0	0	0	0	0	0	4.6	9.5	18.2
Anisole	0	3.1	5.2	6.0	5.6	5.4	6.1	3.4	4.3	3.8	2.6
Cresol	0	0	0	0	0	0	0	4.8	6.1	5.2	4.3
other alkylphenols	0	0	0	0	0	0	0	0.6	0.3	0.5	0.7
The catalytic test co	ondition: rea	ction temper	rature for H	DO is 450	°C, cataly	st dosage	e is 1.5g,	WHSV	of the m	ixture is	1 h ⁻¹ ,
H ₂ flow rate is 70 m	nl/min; c: Tł	ne yield in th	is study is o	carbon yiel	d.						

El	ementa	ıl conte	ents (wt %	∕o) ^a	Surface Elemental contents (wt %) ^b				BET surface	Pore volume
С	Н	Ν	Мо	0	С	N	Мо	0	area (m²/g)	(cm^{3}/g)
47.2	1.7	4.5	26.1	20.5	85.7	6.1	1.7	6.5	81.0	0.085
52.0	2.0	4.1	22.7	19.2	92.6	1.4	0.4	5.5	2.6	0.012
	C 47.2	С Н 47.2 1.7	C H N 47.2 1.7 4.5	C H N Mo 47.2 1.7 4.5 26.1	47.2 1.7 4.5 26.1 20.5	Elemental contents (wt %) ^a C H N Mo O C 47.2 1.7 4.5 26.1 20.5 85.7	Elemental contents (wt %) ^a (wt C H N Mo O C N 47.2 1.7 4.5 26.1 20.5 85.7 6.1	Elemental contents (wt %) ^a (wt %) ^b C H N Mo O C N Mo 47.2 1.7 4.5 26.1 20.5 85.7 6.1 1.7	Elemental contents (wt %) ^a (wt %) ^b C H N Mo O C N Mo O 47.2 1.7 4.5 26.1 20.5 85.7 6.1 1.7 6.5	Elemental contents (wt %) ^a (wt %) ^b surface C H N Mo O C N Mo O area 47.2 1.7 4.5 26.1 20.5 85.7 6.1 1.7 6.5 81.0

Table S5. Physicochemical properties of MoOx@NC-600 before and after reaction.

a: The content of C, H, and N was determined by elemental analyzer. The content of molybdenum in MoOx@NC-600 was measured by atomic absorption spectrum (Escalab 250Xi, Thermo Fisher). b: The elemental content of the catalyst surface was determined by XPS.