Supporting Information

Industrialization of Tailoring Spherical Cathode Material towards High-Capacity, Cycling-Stable and Superior Low Temperature Performance for Lithium-Ion Batteries

Zhonghui Sun ^a, Liansheng Jiao ^{a,c}, Yingying Fan ^a, Fenghua Li ^a, Dandan Wang ^a, Dongxue Han ^a and Li Niu ^{a,b*}

a State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CASCenterforExcellenceinNanoscience, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun, 130022, Beijing, 100049, P. R. China.

b School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P. R. China.

c Department of Chemistry, Hebei Normal University for Nationalities, Chengde 067000, P. R. China.

^{*} Corresponding author, email: <u>lniu@ciac.ac.cn</u> (L. Niu), Fax: +86-431-526 2800.

	Measured molar ratio			Designed molar ratio		
	Ni	Co	Mn	Ni	Co	Mn
NCM-3	0.598	0.198	0.204	0.6	0.2	0.2
NCM-6	0.599	0.196	0.205	0.6	0.2	0.2
NCM-12	0.598	0.199	0.203	0.6	0.2	0.2

Table S1 Total chemical composition of as-obtained precursors by ICP analysis

Figure S1 SEM images of the as-obtained $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ with different conditions were used to measure the particle size.

Table S2 Summary of the representative $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ -based cathode materials for LIBs.

Preparation Method	Cycling Performance	Rate Capability	Ref.
Co-precipitation	161.4 mAh g ⁻¹ after 100 cycles at 180 mA g ⁻¹	152.7 mAh g ⁻¹ at 500 mA g ⁻¹	[S1]
Combustion	166.9 mAh g ⁻¹ after 30 cycles at 20 mA g ⁻¹	92 mAh g ⁻¹ at 320 mA g ⁻¹	[S2]
Ultrasonic spray pyrolysis	146.0 mAh g ⁻¹ after 100 cycles at 170 mA g ⁻¹	131.9 mAh g ⁻¹ at 850 mA g ⁻¹	[\$3]
Co-precipitation	150.4 mAh g ⁻¹ after 225 cycles at 180 mA g ⁻¹	170.0 mAh g ⁻¹ at 500 mA g ⁻¹	[S4]
Fluorinesubstituti on	132.8 mAh g ⁻¹ after 50 cycles at 170 mA g ⁻¹	130.0 mAh g ⁻¹ at 850 mA g ⁻¹	[\$5]
Co-precipitation	169.02 mAh g ⁻¹ after 100 cycles at 90 mA g ⁻¹	166 mAh g ⁻¹ at 900 mA g ⁻¹	[S6]
Spray drying	110.8 mAh g ⁻¹ after 40 cycles at 800 mA g ⁻¹	125 mAh g ⁻¹ at 800 mA g ⁻¹	[S7]
Co-precipitation	158.68 mAh g ⁻¹ after 100 cycles at 90 mA g ⁻¹	171 mAh g ⁻¹ at 90 mA g ⁻¹	[S8]

Co-precipitation	122.98 mAh g ⁻¹ after 100 cycles at 18 mA g ⁻¹	172.8 mAh g ⁻¹ at 18 mA g ⁻¹	[\$9]
Co-precipitation	151.6 mAh g ⁻¹ after 50 cycles at 68 mA g ⁻¹	170 mAh g ⁻¹ at 34 mA g ⁻¹	[S10]
Co-precipitation	172 mAh g ⁻¹ after 300 cycles at 180 mA g ⁻¹	149 mAh g ⁻¹ at 900 mA g ⁻¹	Present work

References

- [S1] L. W. Liang, K. Du, Z. D. Peng, Y. B. Cao, J. G. Duan, J. B. Jiang, G. R. Hu, Electrochimica Acta, 2014, 130, 82-89.
- [S2] W. Ahn, S. N. Lim, K. N. Jung, S. H. Yeon, K. B. Kim, H. S. Song, K. H. Shin, Journal of Alloys Compound, 2014, 609,143-149.
- [S3] T. Li, X. H. Li, Z. X. Wang, H. J. Guo, W. J. Peng, K. W. Zeng, Materials Letters, 2015, 159, 39-42.
- [S4] P. Y. Hou, L. Q. Zhang, X. P. Gao, Journal of Material Chemistry A, 2014, 2, 17130-17138.
- [S5] P. Yue, Z. X. Wang, X. H. Li, X. H. Xiong, J. X. Wang, X. W. Wu, H. J. Guo, Electrochimica Acta, 2013, 112-118.
- [S6] S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin, D. W. Kim, ACS Applied Material Interfaces, 2014, 6, 2546-2552.
- [S7] P. Yue, Z. X. Wang, W. J. Peng, L. J. Li, H. J. Guo, X. H. Li, Q. Y. Hu, Y. H. Zhang, Scripta Materialia, 2011, 65, 1077-1080.
- [S8] Y. S. Lee, W. K. Shin, A. G. Kannan, S. M. Koo, D. W. Kim, ACS Appllied Material Interfaces, 2015,7, 13944-13951.
- [S9] J. G. Li, L. Wang, Q. Zhang, X. M. He, Journal of Power Sources, 2009, 189, 28-33.
- [S10] H. Cao, Y. Zhang, J. Zhang, B. J. Xia, Solid State Ionics, 2005, 176, 1207-1211.