Electronic Supplementary Information

[Ir(ppy)₂pyim]PF₆ dielectric mixed with PMMA for area

emission transistors

Jing Li[†], Wenhai Li[†], Dongxin Ma, Weiqi Zhang, Lei He, Lian Duan*, Liduo Wang and Guifang Dong* Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing, 100084 (P. R. China)

 $\textbf{Email: } duanl@mail.tsinghua.edu.cn; \ donggf@mail.tsinghua.edu.cn; \\$

Table of contents:

Experimental section	
Figure S1.	
Figure S2.	
Figure S3.	
References	

Experimental section

Device Fabrication: First, ZTO layer (40 nm) was formed on the ITO substrate by the way published.¹ The channel length and width are 35 μ m and 1000 μ m, respectively. [Ir(ppy)₂pyim]PF₆ was mixed with different mass concentration ratios of PMMA: 25% (device A), 33% (device B) and 66% (device C). The total concentration was 25 mg mL⁻¹ (in CH₂Cl₂). Then, the mixed solutions were spin-coated at 1500 rpm and baked at 80 °C for 20 minutes. Finally, Ag electrode of 80 nm was evaporated at an evaporating rate of 0.5~1 A°s⁻¹.

Electrical and electroluminescent measurements: Measurements were all carried out in ambient conditions. The Keithley 4200 semiconductor characterization system was used to measure the electrical properties. The Photo Research PR705 spectro-photometer was used to collect the electroluminescent spectrum.

Figure S1. The capacitance information of mixed films from which the dielectric constants are calculated by the following expressions :

$$C_i = \frac{C_p}{S}$$

$$C_i = \frac{\varepsilon_0 \varepsilon_r}{d}$$

(d: the thickness of film; ε_0 : permittivity of vacuum)

Figure S2. Transistor characteristics: (a) the output curves of the Device A; (b) the transfer curves of the Device A; (c) the output curves of the Device C; (d) the transfer curves of the Device C.

Figure S3. EL peak showed almost no shift when a) V_{DS} and b) V_{GS} varied

Figure S4. Control of emission via V_{DS} and V_{GS} for Device A (a) and Device C (b).

References:

(1) Y. L. Zhao, L. Duan, G. Dong, D. Q. Zhang, J. Qiao, L. Wang and Y. Qiu,

Langmuir, 2013, 29, 151.